Soccer Clubs and Regional Image

GfR-Summer-Conference, Marburg, 26-28 June 2014
Rüdiger Hamm
NIERS (Niederrhein Institut für Regional- und Strukturpolitik)

Structur of Presentation

- 1. Introduction
- 2. Regional Effects of Soccer Clubs
- 3. Soccer Clubs and Regional Image Empirical Analysis
 - 1. Aim and Methods
 - 2. Descriptive Analysis Results
 - 3. Factor Analysis and Regression Results
- 4. Summary

Introduction

- Empirical Studies on regional effects of soccer clubs normally focus on demandside effects, i.e. regional multiplier analysis.
- But there seems to be more beyond regional multipliers (CROMPTON)
- Paper deals with the following effect:
 - Firm surveys suggest regional image to be a separate "soft" factor of location (Hamm/Wenke).
 - Sports clubs might be able to transfer their (positive) image to their hometown and thus ...
 - o ... might also be able to affect regional economic development of this city.

Regional Effects of Soccer Clubs

Demand side effects:

- Direct effect employment, income and gross value added
- Indirect effects Investment, demand for intermediate goods and expenses of supporters – employment, income and value added.
- Induced effects via regional income cycle employment, income and value added

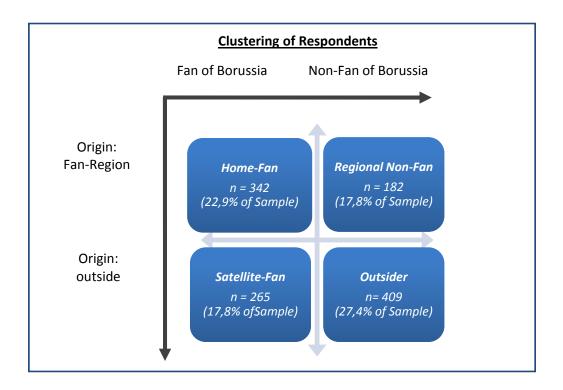
Regional Effects of Soccer Clubs

- Supply side effects:
 - Increase of awareness level of hometown
 - o Improvement of image.
 - Regional location effects
 - Regional "psychic income"
 - Nucleus of a regional communication and cooperation network

Aims and Methods

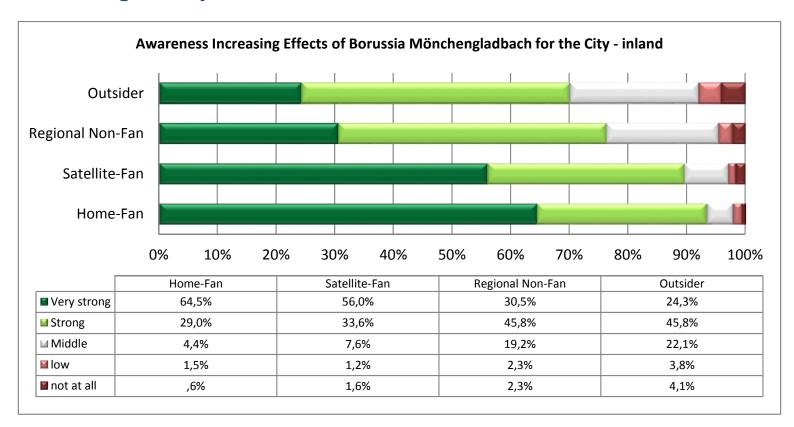
Aim of the following considerations:

- Are there awareness increasing effects of a soccer club for its home town?
- Can a soccer club be an important image builder of its hometown?
- Is it possible to identify an image transfer from the club to the city?

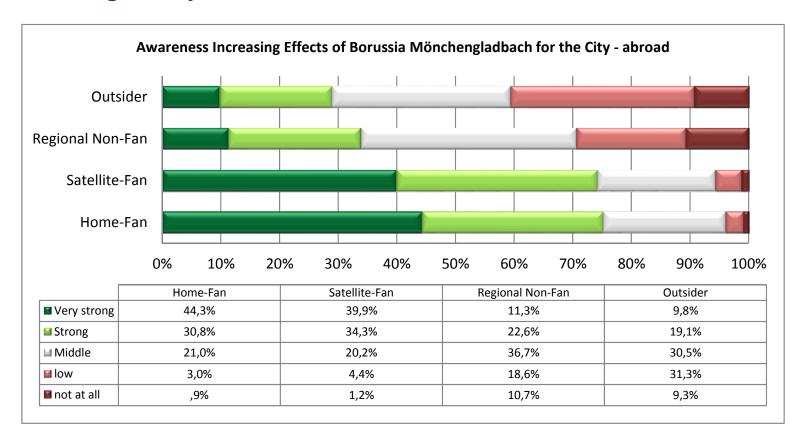

Aim and Methods

- Case study: Borussia Mönchengladbach
- Data for analysing image effects stems from three surveys all of them conducted in autumn 2013.
 - Audience of soccer matches (913).
 - Face-to-face passer-by-surveys (579).
 - o Family-and-friends online-surveys (265).

Aim and Methods

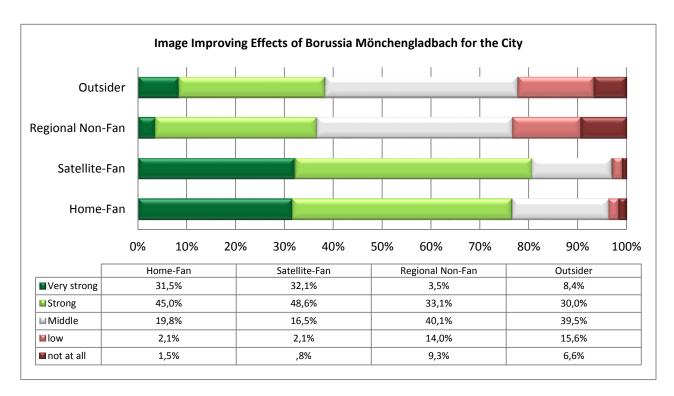

Respondents have been clustered the following way

- Descriptive statistics
- Factor analysis combined with linear regression


Increasing the city's national awareness?

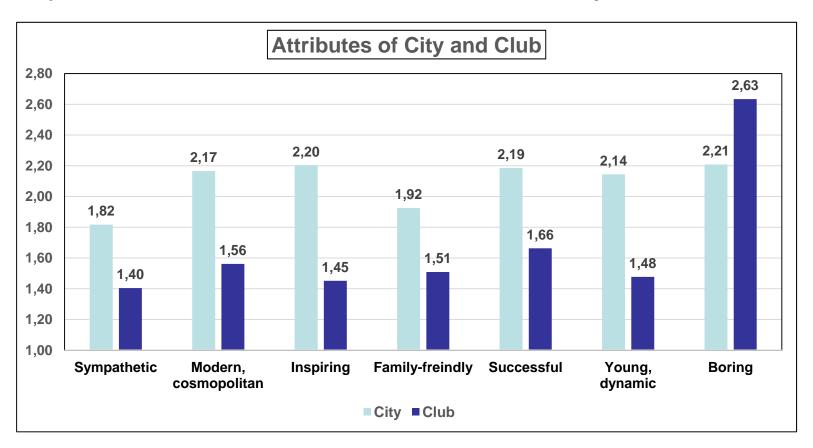
- 93.5% of the home-fans think that the club increases the national awareness of the city.
- Even 70,1% of the outsiders believe so.

Increasing the city's international awareness?



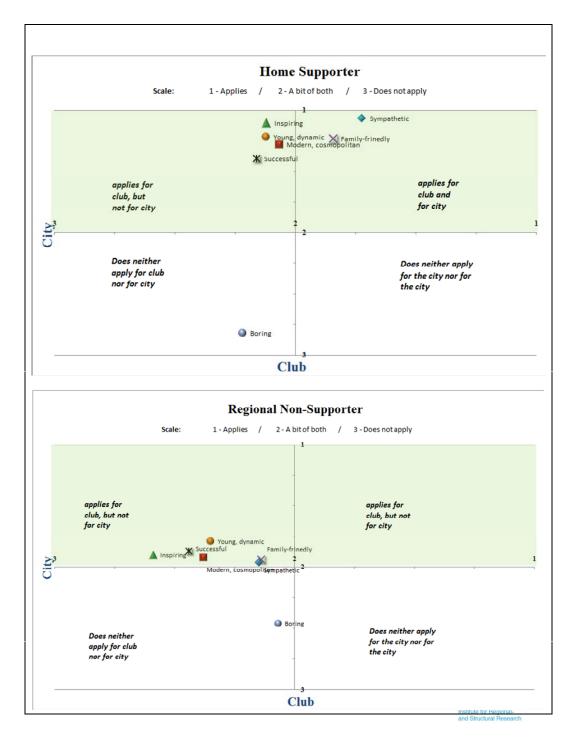
- About 75% of the two fan groups believe that Borussia increases the city's international awareness.
- Nearly 30% of the outsiders believe in these effects

It can be stated that Borussia is an awareness increasing factor for the city of Mönchengladbach.

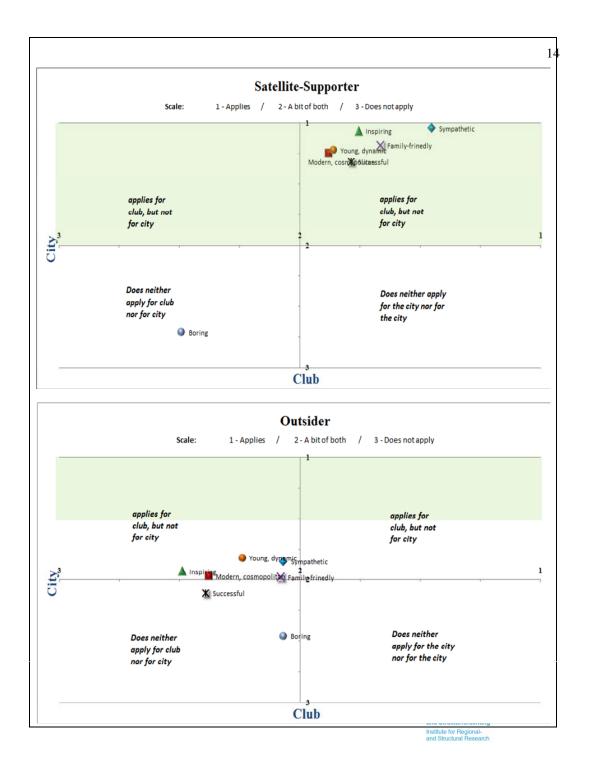

But, are there also image improving effects of Borussia for the city?

• 76,5% of the home-fans and nearly 40% of the outsiders believe in these effects.

Respondents had to rate a number of attributes for the city and the club.



- In all respects the club is noticeably rated more positive than the city.
- Results suggest that an image transfer takes place.
- More probable from the club to the city than vice versa.

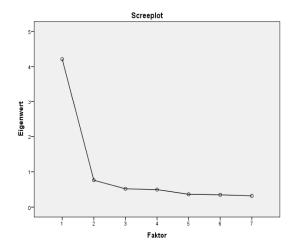

Ratings by fan groups

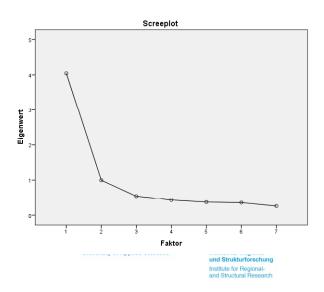
- Expectation in case of a transfer: fans of Borussia not only judge the club more positive than non-fans but also the city.
- Exactly this can be observed in diagram.
- The points tend to move to the upper right part of the coordinate system meaning that home-fans give better ratings to both – club and city.

Ratings by fan groups

- The same can be observed in the next diagram – comparing satellite fans and outsiders.
- The points tend to move to the upper right part of the coordinate system meaning that satellite-fans give better ratings to both – club and city.

- Results suggest that a transfer of (positive) image takes place.
- Combination of factor analysis and regression to check the results.
- In the surveys the respondents had to evaluate seven attributes for the city and the club. Factor analysis is used
 - to discover whether variables are overlapping,
 - to structure the relationships between these variables and
 - to identify groups of variables highly correlated to each other and to separate them from those with low correlation.
- Results of Factor analysis are used to calculate values for the structured factors.
- Finally new variables are used for analysing the relationship between the city's and the club's image by means of a regression.


First step: Testing appropriateness of data (city-image and club-image):


- Correlation: All variables used to describe the image are correlated to each other. Correlation is below 10,71 in all cases, i.e. no clear conclusion.
- Significance of correlation: All correlations are highly significant (1%-level).
- The Bartlett-Test tests whether a sample stems from a population of uncorrelated variables. Result: With a probability < 1% the variables are uncorrelated.
- The Kaiser-Meyer-Ohlkin-Criterion ("measure of sampling adequacy"=MSA) tests whether a factor analysis is meaningful or not. It allows an evaluation of the overall correlation matrix as well as of single variables. Literature suggests the MSA to be above 0,8; in our case the MSA-values for the correlation matrices are above 0,9, the MSA-values for the single variables lie between 0,779 (middling) and 0,940 (marvellous).
- Data is appropriate!

Second step: Deciding how many factors should be extracted Literature suggests two different ways for solving this problem.

- 1. Scree-test, i.e.
 - Plotting the eigenvalues in diminishing order,
 - Look where the difference of the eigenvalues between two factors takes a maximum (the curve must have a sharp bend),
 - Choose the first point left to this sharp bend it determines the number of factors to be extracted.
 - Method suggests to extract one factor in both cases (left hand city; right hand – club!)

Second way:

- 2. Kaiser-Criterion: Number of extracted factors should equal the number of factors with an eigenvalue above one.
 - The table shows that only the eigenvalue of the first factor is above one. So this method, too, would propose to extract one factor in both cases.
 - But in the case of Borussia the eigenvalue of the second factor (0.995) is hardly below 1.

Decision: Extraction of one factor for the city and the club. Alternative: Two factors for the club.

Table: Explained Total Variance								
		City		Club				
Component	Or	iginal Eigenvalu	ies	Original Eigenvalues				
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	4,212	60,16	60,16	4,046	57,80	57,80		
2	0,759	10,85	71,01	0,995	14,22	72,02		
3	0,515	7,36	78,37	0,538	7,69	79,70		
4	0,493	7,04	85,41	0,433	6,18	85,88		
5	0,360	5,15	90,55	0,373	5,32	91,21		
6	0,345	4,93	95,48	0,357	5,10	96,30		
7	0,316	4,52	100,00	0,259	3,70	100,00		
Extraktionsmethode: Hauptkomponentenanalyse.								

	City		Club						
	First	Coefficient	First	Coefficient	First	Coefficient	Second	Coefficient	
	Component		Component		Component		Component		
Sympathetic	0,793	0,188	0,847	0,209	0,814	0,186	-0,262	-0,153	
Modern, cosmopolitan	0,821	0,195	0,826	0,204	0,825	0,212	-0,077	0,030	
Inspiring	0,840	0,199	0,862	0,213	0,840	0,200	-0,204	-0,093	
Family-frinedly	0,749	0,178	0,786	0,194	0,789	0,222	0,074	0,174	
Successful	0,818	0,194	0,764	0,189	0,806	0,211	-0,050	0,054	
Young, dynamic	0,805	0,191	0,803	0,198	0,794	0,212	-0,019	0,083	
Boring	-0,571	-0,136	-0,240	-0,059	-0,072	0,106	0,980	0,953	
Own calculations by principal component method									

Image of the city:

- All variables have high factor loadings.
- Coefficients of the components of factor 1 estimated by multiple regression.
- They are the weights for calculating the values of the new factor by multiplication with the original data for the seven attributes.
- Six positive attributes with similar positive weights.
- Negative attribute "boring" has a lower, but negative weight.
- New variable is defined as "Image of the city".

	City		Club						
	First	Coefficient	First	Coefficient	First	Coefficient	Second	Coefficient	
	Component		Component		Component		Component		
Sympathetic	0,793	0,188	0,847	0,209	0,814	0,186	-0,262	-0,153	
Modern, cosmopolitan	0,821	0,195	0,826	0,204	0,825	0,212	-0,077	0,030	
Inspiring	0,840	0,199	0,862	0,213	0,840	0,200	-0,204	-0,093	
Family-frinedly	0,749	0,178	0,786	0,194	0,789	0,222	0,074	0,174	
Successful	0,818	0,194	0,764	0,189	0,806	0,211	-0,050	0,054	
Young, dynamic	0,805	0,191	0,803	0,198	0,794	0,212	-0,019	0,083	
Boring	-0,571	-0,136	-0,240	-0,059	-0,072	0,106	0,980	0,953	
Own calculations by principal component method									

Image of the club:

- Extraction of one factor. Similar results as in the case of the city.
- Extraction of two factors:
 - Factor 1: All variables but one show high loadings. The negative attribute "boring" has a low and negative factor loading.
 - Factor 2: Only one variable has a very high loading while the others only have low loadings.

	City		Club						
	First	Coefficient	First	Coefficient	First	Coefficient	Second	Coefficient	
	Component		Component		Component		Component		
Sympathetic	0,793	0,188	0,847	0,209	0,814	0,186	-0,262	-0,153	
Modern, cosmopolitan	0,821	0,195	0,826	0,204	0,825	0,212	-0,077	0,030	
Inspiring	0,840	0,199	0,862	0,213	0,840	0,200	-0,204	-0,093	
Family-frinedly	0,749	0,178	0,786	0,194	0,789	0,222	0,074	0,174	
Successful	0,818	0,194	0,764	0,189	0,806	0,211	-0,050	0,054	
Young, dynamic	0,805	0,191	0,803	0,198	0,794	0,212	-0,019	0,083	
Boring	-0,571	-0,136	-0,240	-0,059	-0,072	0,106	0,980	0,953	
Own calculations by principal component method									

Image of the club:

- Factor 1: Coefficients of the six positive attributes again have similar positive weights. The weight of the negative attribute is small.
- Factor 2: One variable with an overwhelming positive influence ("boring"). The weights of the others differ in sign and magnitude and are much lower.
- Two new variables can be calculated "positive image factor" and "negative image factor".

Regression Analysis

Last step: OLS.

(1)
$$I_{city} = f(I_{club})$$

(2)
$$I_{city} = f(I_{club,pos}, I_{club,neg})$$

Expectations:

- The better the club's image, the better the city's image,
- i.e. first derivations are expected to be positive:
 - \circ dl_{city}/dl_{club} > 0 for (1)
 - \circ i.e. $dl_{city}/dl_{pos,club} > 0$ and $dl_{city}/dl_{neg,club} > 0$ for (2)

Regression Analysis

Results of Regression Analysis - Dependent Variable: Image of the City								
	Coefficient	T-Value	Significance	R ² corr.				
Regression 1								
Const.	0,024	0,75	0,452	0,185				
Image of the club	0,417	13,45	0,000					
Regression 2								
Const.	0,026	0,83	0,407	0,198				
Positive Image of the club	0,436	14,03	0,000					
Negative Image of the club	0,043	1,35	0,177					
Own calculations								

Results of OLS:

- "Image of the city" is the better the better the "Image of the club".
- "Image of the city" is the better the better the "Positive Image of the club".
- "Image of the city" is the better the better the rating of the "negative Image of the club", but the influence of "negative Image of the club" is not significant.
- Expectations are fulfilled and last point could mean that rather positive attributes than negative ones are transferred.

Summary

Main results:

Borussia Mönchengladbach is increasing the city's national and international awareness.

- Descriptive analysis and the combination of factor analysis and regressions suggest a transfer of image from the club to the city.
- Furthermore, regression analysis gives a hint that positive image attributes are transferred more probably than negative ones.
- In the case of Borussia Mönchengladbach ...
 - the soccer club influences regional image ...
 - ... and as regional image is a relevant factor of location ...
 - ... the soccer club also influences regional development behind regional multipliers.

Thank You for Your Attention!

