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Abstract. In this report, we will present an appendix for the paper (Ref. 14) by
the author. The results of this paper could not be included into (Ref. 14) due to
page restrictions. Section numbering is taken over from (Ref. 14).

Some remarks on switching time optimization for controls without feedback rep-
resentation will be presented in Subsection 3.4. Proofs for variational derivatives
which are used in switching time optimization for bang–bang and singular controls
are given in Section 4. A detailed elaboration of switching optimization for the
Goddard Problem will be presented in Subsection 5.2.

3.4 Controls Without Feedback Representation

If instead of Assumption 3.1 the control can only be determined as a function
ui(t, x, λ) depending also on the adjoint variable λ, a modified approach can be
used to accomplish switching time optimization. We will formulate an augmented
induced optimization problem involving the optimization vector

z := (xT
0 , λT

0 , t1, . . . , td, td+1)
T ∈ R2n+d+1

where λ0 denotes the initial value λ(0) of the adjoint variable. We denote by x(·, z)
and λ(·, z) the absolutely continuous solution of the coupled initial value problem

x(0) = x0, ẋ(t) = f(t, x(t), u(t, x(t), λ(t))),

λ(0) = λ0, λ̇(t) = Hx(t, x(t), u(t, x(t), λ(t)), λ(t))

where u(t, x, λ) is piecewisely defined by the functions ui(t, x, λ) in each interval
Ji, i = 1, . . . , d. Here, the second differential equation is motivated by the adjoint
differential equation (7), (Ref. 14) which holds along the optimal trajectory. Then,
the augmented induced problem additionally includes the transversality conditions
(8) and (9), (Ref. 14) as constraints for λ(·, z) at t = 0 and t = tf :

min G(z) := g(x0, x(tf , z), tf )

s. t. Φ(z) :=





φ(x0, x(tf , z), tf )
λ0 + lx0

(x0, x(tf , z), tf , ρ0, ρ)
λ(tf , z) − lxf

(x0, x(tf , z), tf , ρ0, ρ)



 = 0.
(1)
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As some initial values λi(0) may be given by the transversality condition (8), (Ref.
14), these values should, analogously to Remark 3.3, (Ref. 14), be eliminated from
the induced problem. This approach was used by Vossen/Rehbock/Siburian (Ref.
32).

If the control cannot be determined as a function ui(t, x, λ) since the control does
not appear in any derivative of the switching function (i.e., the singular control is
of order q = ∞), the problem cannot be reduced to a finite dimensionional one
by this approach. As an extension to (21), (Ref. 14), one idea is to optimize the
discretized control along all singular arcs where the function ui(t, x, λ) is unknown.
This approach was described by Büskens et al. (Ref. 33).

4 Variational Derivatives in the Induced Problem

Obviously, the verification of optimality conditions (24), respectively, (25), (Ref. 14)
and hence, the calculation of variational derivatives of the Lagrangian function with
respect to the optimization vector z requires the calculation of variational derivatives
of the state x(·, z) with respect to z.

4.1 Derivatives of the Function h

In the following, we will need the derivatives of the function h in (20), (Ref. 14)
with respect to the states. The first derivative is given by

hx(t, x) = fx(t, x, u(t, x)) + fu(t, x)ux(t, x) (2)

and, with arbitrary vectors µ, ν ∈ Rn, the second derivative can be written as

µT hxx(t, x)ν = µTfxx(t, x, u(t, x))ν + µT fxu(t, x)(ux(t, x)ν)

+ (ux(t, x)µ)T fux(t, x)ν + fu(t, x)(µT uxx(t, x)ν).
(3)

Here, the derivative µThxxν is a column vector with the components
µT (hk)xxν, k = 1, . . . , n. The derivatives fxx, fxu, fux und uxx are understood
in an appropiate way. Note that the term including fuu was deleted in (3) as u
appears only linearly in f .

For the calculations of the Lagrangian derivatives, the following result will be
useful.

Proposition 4.1. Along a trajectory T̂ = (x̂, û) which satisfies the necessary opti-
mality conditions (7)–(12), (Ref. 14) of the minimum principle, the following holds
for all t ∈ [0, t̂f ]:

λ(t)hx(t) = Hx(t), (4)

λ(t)
(

µT hxx(t)ν
)

= µT
(

Hxx(t) + Hxu(t)ux(t) + (ux(t)
)T

Hux(t))ν (5)

for arbitrary column vectors µ, ν ∈ Rn.
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Proof. Due to (2), we obtain

λhx = λ(fx + fuux) = (λf)x + (λf)uux = Hx + Huux = Hx

for all t ∈ [0, t̂f ]. The last equality arises from the following fact. Consider a
component ûk, 1 ≤ k ≤ m, for some t ∈ [0, t̂f [. For sufficiently small ǫ > 0,
ûk is either singular or bang–bang on [t, t + ǫ]. Hence, Huk

(t) = σk(t) ≡ 0 or
(uk)x(t, x(t)) ≡ 0 holds along the interval [t, t+ǫ]. As this is true for all k = 1, . . . , m,
we obtain Hu(t)ux(t) = 0 for all t ∈ [0, t̂f [. Considering the interval [t − ǫ, t] for
t = t̂f , the representation (4) is proved. To verify equation (5), we obtain in view
of (3)

λ
(

µT hxxν
)

=

n
∑

j=1

(

λjµ
T (hj)xxν

)

= µT Hxxν + µTHxu(uxν) + (uxµ)T Huxν + Huµ
T uxxν

= µT (Hxx + Hxuux + uT
x Hux)ν

for all t ∈ [0, t̂f ]. As in the proof for (4), the last equality holds due to

Huµ
T uxxν =

m
∑

k=1

(

µT Huk
(uk)xxν

)

= 0

as we have Huk
(t) ≡ 0 if ûk(t) is singular and (uk)xx(t, x(t)) ≡ 0 if ûk(t) is bang–

bang.

4.2 Variational Derivatives of the States

In a first step, formulas for variational derivatives of the states are given. These
representations will be used to calculate variational derivatives of the Lagrangian
function which are essential for the verification of first and second–order optimality
conditions in the induced problem (20), (Ref. 14).

4.2.1 First–Order Variational Derivatives

The functions

vi(t, z) : =
∂x

∂(x0)i

(t, z) i = 1, . . . , n, (6)

yi(t, z) : =
∂x

∂ti
(t, z), i = 1, . . . , d, (7)

yf(t, z) : =
∂x

∂tf
(t, z), (8)

are called first–order variational derivatives of the states. We shall use the abbrevi-
ations v̂i(t) := vi(t, ẑ), ŷi(t) := yi(t, ẑ) and ŷf(t) := yf(t, ẑ). The following result is
well-known from the theory of ODEs.
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Proposition 4.2. The function vi(t, z), 1 ≤ i ≤ n, is the solution of the IVP

vi(0, z) = ei, v̇i(t, z) = hx(t, x(t, z))vi(t, z), (9)

where ei is the i-th unit vector.

Proposition 4.3. The function yi(t, z), 1 ≤ i ≤ d, satisfies yi(t, z) ≡ 0 on [0, ti[
and for t ≥ ti it is the solution of the IVP

yi(ti, z) = −[ẋ]i = −[h]i, ẏi(t, z) = hx(t, x(t, z))yi(t, z), t ≥ ti. (10)

Proof. Variation of a switching time ti will change the solution of IVP (19), (Ref.
14) only in the interval [ti, tf ]. Hence, we have yi(t, z) ≡ 0 on [0, ti[. Furthermore,
the solution of IVP (19), (Ref. 14) can be written as

x(t, z) = x(t−i , z) +

t
∫

t+i

h(s, x(s, z))ds, t ≥ ti.

Differentiating this equation with respect to ti, we obtain

yi(t, z) = ẋ(t−i , z) − ẋ(t+i , z) +

t
∫

t+i

hx(s, x(s, z))yi(s, z) ds (11)

which yields (10).

The following obvious result is given for the purpose of completeness.

Proposition 4.4. The function yf satisfies yf(t, z) ≡ 0 on [0, tf [ and for t = tf

yf(tf , z) = ẋ(tf , z) = h(tf , x(tf , z)). (12)

4.2.2 Second–Order Variational Derivatives

For the computation of second–order variational derivatives of the states, we will
calculate only the entries ∂2x/(∂zj∂zi) for i ≤ j as the matrices ∂2(xl)/∂z2 are
symmetric for l = 1, . . . , n. We use the following notations for the second–order
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derivatives:

vij(t, z) : =
∂2x

∂(x0)j∂(x0)i

(t, z) =
∂vi

∂(x0)j

(t, z), 1 ≤ i ≤ j ≤ d, (13)

wij(t, z) : =
∂2x

∂tj∂(x0)i

(t, z) =
∂vi

∂tj
(t, z), 1 ≤ i ≤ n, 1 ≤ j ≤ d, (14)

vif(t, z) : =
∂2x

∂tf∂(x0)i

(t, z) =
∂vi

∂tf
(t, z), 1 ≤ i ≤ n, (15)

yij(t, z) : =
∂2x

∂tj∂ti
(t, z) =

∂yi

∂tj
(t, z), 1 ≤ i ≤ j ≤ d, (16)

yif(t, z) : =
∂2x

∂tf∂ti
(t, z) =

∂yi

∂tf
(t, z), 1 ≤ i ≤ d, (17)

yff(t, z) : =
∂2x

∂tf∂tf
(t, z) =

∂yf

∂tf
(t, z), (18)

respectively, v̂ij(t) := vij(t, ẑ), ŵij(t) := wij(t, ẑ) etc. Also the second–order varia-
tional derivatives can be computed via certain IVPs. For notational convenience we
shall omit all arguments of the variations in the ODEs.

Proposition 4.5. The function vij(t, z), 1 ≤ i ≤ j ≤ d, is the solution of the IVP

vij(0, z) = 0, v̇ij = hxv
ij + (vi)T hxxv

j. (19)

Proof. By (9), the function vi(t, z) satisfies

vi(t, z) = ei +

tf
∫

0

hx(s, x(s, z))vi(t, s) ds.

Differentiating this equation with respect to (x0)j , j ≥ i, yields

vij(t, z) =

tf
∫

0

(

hx(s, x(s, z))vij(t, s) + (vi(t, s))T hxx(s, x(s, z))vj(t, s)
)

ds

which proves (19).

Proposition 4.6. The function wij(t, z), 1 ≤ i ≤ n, 1 ≤ j ≤ d, satisfies wij(t, z) ≡
0 on [0, tj[ and for t ≥ tj it is the solution of the IVP

wij(tj , z) = −[hx]
jvi(tj, z), ẇij = hxw

ij + (vi)T hxxy
j. (20)
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Proof. As in Proposition 4.3, we have wij ≡ 0 on [0, tj[. The solution of the IVP (9)
can be written as

vi(t, z) = vi(t−j , z) +

tf
∫

t+j

hx(s, x(s, z))vi(s, z) ds.

Differentiating this equation with respect to tj yields

wij(t, z) = v̇i(t−j , z) − v̇i(t+j , z)

+

tf
∫

t+j

(

hx(s, x(s, z))wij(s, z) + (vi(s, z))T hxx(s, x(s, z))yj(s, z)
)

ds

which proves (20) in view of the representation (9) for v̇i.

The following result is analogous to (12).

Proposition 4.7. The function vif(t, z), 1 ≤ i ≤ n, satisfies

vif(tf , z) = v̇i(tf , z) = hx(tf , x(tf , z))vi(tf , z). (21)

Proposition 4.8. The function yij(t, z), 1 ≤ i ≤ j ≤ d, satisfies yij(t, z) ≡ 0 on
[0, tj[ and for t ≥ tj it is the solution of the following IVP:

(a) For i = j we have

yii(ti, z) = −[ht]
i − [hx]

ihi− − hi+
x yi(ti, z),

ẏii = hxy
ii + (yi)T hxxy

i.
(22)

(b) For i < j the IVP is given by

yij(tj , z) = −[hx]
jyi(tj , z), ẏij = hxy

ij + (yi)T hxxy
j. (23)

Proof. As in Proposition 4.3, we have yij ≡ 0 on [0, tj[. Result (b) can be proved in
complete analogy to Proposition 4.6. In the proof for (a), differentiation of equation
(11) with respect to ti yields

yii(t, z) = −[ht]
i − [hx]

iẋi− − (ẏi)i+ +

t
∫

t+i

(

hxy
ii + (yi)T hxxy

i
)

ds.

In view of (10), IVP (22) is proved.

The next two results are analogous to (12).
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Proposition 4.9. The function yif(t, z), 1 ≤ i ≤ d, satisfies

yif(tf , z) = ẏi(tf , z) = hx(tf , x(tf , z))yi(tf , z). (24)

Proposition 4.10. The function yff(t, z) satisfies

yff(tf , z) = ḣ(tf , x(tf , z)) = ht(tf , x(tf , z)) + hx(tf , x(tf , z))h(tf , x(tf , z)). (25)

Remark 4.1. If the control is bang–bang in [0, tf ], all terms involving ux and uxx

vanish in (2) and (3). Hence, we have hx = fx and hxx = fxx in this case and
the representations of the variational derivatives are identical to those given by
Osmolovskii/Maurer (Ref. 9) for bang–bang controls.

4.3 Variational Derivatives of the Lagrangian

Consider a trajectory T̂ = (x̂, û) which satisfies the necessary optimality conditions
(7)–(12), (Ref. 14) of the minimum principle.

4.3.1 First–Order Variational Derivatives

We will now calculate explicit representations for the first–order variational deriva-
tives of the Lagrangian with respect to the optimization vector z, i.e., the free initial
states, the switching times and the free final time.

Proposition 4.11. For i = 1, . . . , n the following holds:

∂

∂(x0)i

L(ẑ, ρ0, ρ) = 0 (26)

Proof. Applying the chain rule and using (23), (Ref. 14) as well as the transversal-
ity conditions (8) and (9), (Ref. 14), the first–order variational derivatives of the
Lagrangian with respect to free initial values (x0)i of the states are given by

∂

∂(x0)i

L(ẑ, ρ0, ρ) = l(x0)i
(x̂b, t̂f , ρ0, ρ) + lxf

(x̂b, t̂f , ρ0, ρ)v̂i(t̂f )

= −λi(0) + λ(t̂f )v̂
i(t̂f).

(27)

Together with (9), the last term can be written as

λi(0) +

t̂f
∫

0

d

dt
(λv̂i) dt. (28)

Let us transform the integrand. In view of (7), (Ref. 14), (9) and (4), we obtain

d

dt
(λv̂i) = λ̇v̂i + λ ˙̂vi = (−Hx + λhx)v̂

i = 0. (29)

Substituting (28) and (29) into (27) yields (26).
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Proposition 4.12. For i = 1, . . . , d, we have

∂

∂ti
L(ẑ, ρ0, ρ) = 0. (30)

Proof. Equation (23), (Ref. 14) together with transversality condition (9), (Ref. 14)
yields

∂

∂ti
L(ẑ, ρ0, ρ) = lxf

(x̂b, t̂f , ρ0, ρ)ŷi(t̂f) = λ(t̂i)ŷ
i(t̂i) +

t̂f
∫

t̂i

d

dt
(λŷi)dt.

Due to (7), (Ref. 14), (10) and (4), the integrand satisfies

d

dt
(λŷi) = λ̇ŷi + λ ˙̂yi = (−Hx + λhx)ŷ

i = 0.

Furthermore, (10) implies that the first term can be written as

λ(t̂i)ŷ
i(t̂i) = −λ(t̂i)[h]i = −σ(t̂i)[û]i = 0

as per definition of a switching time, cf., Remark 2.1, (Ref. 14). This proves (30).

Proposition 4.13. If the final time tf is free, the following holds:

∂

∂tf
L(ẑ, ρ0, ρ) = 0. (31)

Proof. Equation (23), (Ref. 14) together with transversality condition (9), (Ref. 14)
and equation (11), (Ref. 14) yields

∂

∂tf
L(ẑ, ρ0, ρ) = lxf

(x̂b, t̂f , ρ0, ρ)ŷf(t̂f) + ltf (x̂b, t̂f , ρ0, ρ)

= (λf)(t̂f) − H(t̂f) = 0.

This proves (31).

At this point, we will summarize our results.

Lemma 4.1. Let T̂ = (x̂, û) be a trajectory which satisfies the necessary conditions
(7)–(12), (Ref. 14) of the minimum principle. Then, the first–order variational
derivatives of the Lagrangian vanish, i.e.,

∂

∂z
L(ẑ, ρ0, ρ) = 0.

In other words, Lemma 4.1 says the following.

Corollary 4.1. Let T̂ = (x̂, û) be a trajectory which satisfies the necessary condi-
tions (7)–(12), (Ref. 14) of the minimum principle. Then, the necessary conditions
(24), (Ref. 14) in the induced optimization problem (21), (Ref. 14) are fulfilled.
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4.3.2 Second–Order Variational Derivatives

We will now present explicit representations for the second–order variational deriva-
tives of the Lagrangian with respect to the optimization vector z. Due to symmetry
of the matrix Lzz, we will only investigate the derivatives Lzizj

for i ≤ j. After
presenting all results, we will give comments on how to prove the representations.
For notational convenience, we will drop all arguments in the endpoint Lagrangian
l and its partial derivatives which will be evaluated at (x̂b, t̂f , ρ0, ρ).

Proposition 4.14. For 1 ≤ i ≤ j ≤ n we have

∂2

∂(x0)j∂(x0)i

L(ẑ, ρ0, ρ) = l(x0)i(x0)j
+ l(x0)ixf

v̂j(t̂f )

+ (v̂i(t̂f ))
T
(

lxf (x0)j
+ lxf xf

v̂j(t̂f)
)

+

t̂f
∫

0

(v̂i)T (Hxx + Hxuux + (ux)
T Hux)v̂

jdt.

(32)

Proposition 4.15. For i = 1, . . . , n and j = 1, . . . , d the following holds:

∂2

∂tj∂(x0)i

L(ẑ, ρ0, ρ) = l(x0)ixf
ŷj(t̂f ) + v̂i(t̂f)lxf xf

ŷj(t̂f)

+

t̂f
∫

t̂j

(v̂i)T (Hxx + Hxuux + (ux)
T Hux)ŷ

jdt.

(33)

Proposition 4.16. For i = 1, . . . , n we obtain

∂2

∂tf∂(x0)i

L(ẑ, ρ0, ρ) = l(x0)itf + l(x0)ixf
ŷf(t̂f)

+ v̂i(t̂f )
T
(

lxf tf + lxfxf
ŷf(t̂f )

)

+ Hx(t̂f )v̂
i(t̂f).

(34)

Proposition 4.17. The variational derivatives with respect to the switching times
are given as follows.

(a) For i = 1, . . . , d we have

∂2

∂ti∂ti
L(ẑ, ρ0, ρ) = Di(H) − [Hx]

iŷi(t̂i) + ŷi(t̂f)
T lxf xf

ŷi(t̂f)

+

t̂f
∫

t̂i

(ŷi)T (Hxx + Hxuux + uT
x Hux)ŷ

i dt.

(35)
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(b) For 1 ≤ i < j ≤ d we get

∂2

∂tj∂ti
L(ẑ, ρ0, ρ) = −[Hx]

j ŷi(t̂j) + ŷj(t̂f )
T lxfxf

ŷi(t̂f )

+

t̂f
∫

t̂j

(ŷj)T (Hxx + Hxuux + uT
x Hux)ŷ

i dt.

(36)

Proposition 4.18. For i = 1, . . . , d we obtain

∂2

∂tf∂ti
L(ẑ, ρ0, ρ) = (ŷi(t̂f))

T
(

lxfxf
ŷf(t̂f ) + lxf tf

)

+ (Hxŷ
i)(t̂f). (37)

Proposition 4.19. The following holds:

∂2

∂tf∂tf
L(ẑ, ρ0, ρ) = (ŷf(t̂f ))

T
(

lxf xf
ŷf(t̂f ) + lxf tf

)

+ ltf xf
ŷf(t̂f ) + ltf tf + (Ht + Hxf)(t̂f).

(38)

The proofs for Propositions 4.14-4.19 are very similar. As an example, we will
give the proof for Proposition 4.17 below. The structure in each proof is as follows.
Applying the chain rule to calculate the derivative of L, one obtains one term includ-
ing a second–order variational derivative of the state. This term can be transformed
into an integral term in which the second–order variational derivative can then be
deleted by using the IVP representations calculated in the previous paragraph.

Proof. For both cases (a) and (b), i.e. 1 ≤ i ≤ j ≤ d, we obtain

Ltitj =
∂

∂tj

(

lxf
yi

)

|z=ẑ = ŷi(t̂f )lxfxf
ŷj(t̂f) + lxf

ŷij(t̂f).

In view of transversality condition (9), (Ref. 14), the last term can be written as

lxf
ŷij(t̂f) = λ(t̂f)ŷ

ij(t̂f) = λ(t̂j)ŷ
ij(t̂j) +

t̂f
∫

t̂j

d

dt
(λŷij) dt (39)

Using the adjoint differential equation (7), (Ref. 14), ODE (23) for yij and equations
(4) and (5), we have

d

dt
(λŷij) = −Hxŷ

ij + λhxŷ
ij + λ(ŷi)T hxxŷ

j

= (ŷi)T (Hxx + Hxuux + (ux)
T Hux)ŷ

j

for the integrand. We point out that equation (4) was essential to delete the second–
order variational derivative yij from the integrand. For the first term in (39) we will
consider the cases i = j and i < j separately.
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(a) For i = j, the initial condition in (22) for ŷii(t̂i) together with (4) yields

λ(t̂i)ŷ
ii(t̂i) = λ(t̂i)(−[ht]

i − [hx]
ihi− − hi+

x ŷi(t̂i))

= −[Ht]
i − [Hx]

ihi− − H i+
x ŷi(t̂i).

Due to the initial condition (10) for ŷi(t̂i), we have H i−
x ŷi(t̂i)+H i−

x [h]i = 0 which
can be added to the last equation. Together with (14), (Ref. 14), this yields

λ(t̂i)ŷ
ii(t̂i) = −[Ht]

i − [Hx]
ihi− − H i+

x ŷi(t̂i) + H i−
x [h]i + H i−

x ŷi(t̂i)

= Di(H) − [Hx]
iŷi(t̂i).

(b) In the case i < j, using initial condition (23) for ŷij(t̂i) and (4), we obtain

λ(t̂j)ŷ
ij(t̂j) = −λ(t̂j)[hx]

j ŷi(t̂j) = −[λhx]
j ŷi(t̂j) = −[Hx]

j ŷi(t̂j).

Hence, (35) and (36) are proved.

We note that the proofs for Propositions 4.16, 4.18 and 4.19 are simpler as we have
given direct representations of the corresponding second–order variational deriva-
tives instead of IVPs in the last paragraph. Hence, after applying the chain rule,
the second–order terms can directly be replaced instead of using the integral ap-
proach.

We will summarize all results for the second–order variational derivatives of the
Lagrangian function.

Lemma 4.2. Let T̂ = (x̂, û) be a trajectory which satisfies the necessary conditions
(7)–(12), (Ref. 14) of the minimum principle. Then, the second–order variational
derivatives of the Lagrangian are given by (32)–(38) and hence, depend only on
first–order but not on second–order variational derivatives of the states.

4.4 Variational Derivatives of the Function Φ

Concluding the variational computations in this section, we will now calculate the
variational derivatives of the function Φ which are essential for the verification of
second–order sufficient conditions (25), (Ref. 14) if the induced problem involves
constraints. Applying the chain rule, we obtain

∂

∂(x0)i

Φ(ẑ) = φ(x0)i
(x̂b, t̂f) + φxf

(x̂b, t̂f)v̂
i(t̂f), i = 1, . . . , n,

∂

∂ti
Φ(ẑ) = φxf

(x̂b, t̂f)ŷ
i(t̂f), i = 1, . . . , d,

∂

∂tf
Φ(ẑ) = φxf

(x̂b, t̂f)ŷ
f(t̂f) + φtf (x̂b, t̂f ).

(40)
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5.2 Goddard Problem

We consider the following optimal control problem with three state variables h, v
and m, a scalar control u and free final time tf . This model can also be found in
Bryson/Ho (Ref. 15) and Maurer (Ref. 16). We note that we have taken over the
notations from the references as the notations therein are suitable to the meaning
of the occuring functions and parameters (see below). There shall be no confusion
with the notations used before.

max h(tf )

s. t. ḣ = v, v̇ =
1

m
(cu − D(v, h)) − g(h), ṁ = −u,

h(0) = h0, v(0) = v0, m(0) = m0, m(tf ) = mf ,

0 ≤ u(t) ≤ umax ∀ t ∈ [0, tf ].

(41)

Here, h denotes the height, v the velocity and m the mass of a rocket which shall
be controlled to a maximal height at the end of the time horizon. The initial mass
m0 consists of the rocket mass mf and the mass of the initial amount of fuel in the
rocket. The dynamics involve the drag function D(v, h) and the gravity function
g(h) which are defined as

D(v, h) = αv2 exp(−βh), g(h) = g0
r2
0

(r0 + h)2
.

The data are taken from Maurer (Ref. 16):

α = 0.01227, β = 0.000145, g0 = 9.81, r0 = 6.371 · 106, c = 2060,

m0 = 214.839, mf = 67.9833, umax = 9.52551, h0 = v0 = 0, tf free.

The Hamiltonian and the switching function are given by

H(x, λ, u) = λhv + λv

( 1

m
(cu − D(v, h)) − g(h)

)

− λmu,

σ(x, λ) =
cλv

m
− λm.

Using the solver IPOPT, we obtain the following optimal control structure:

u(t) =







umax, 0 ≤ t ≤ t1,
using(x(t)), t1 ≤ t ≤ t2,
0, t2 ≤ t ≤ tf .

where, as it is shown in Maurer (Ref. 16), the singular control of order q = 1 can
be obtained in the feedback form

using(h, v, m) =
D

c
+ m

(c − v)Dh + (Dv + cDvv)g + c(mgh − Dvhv)

D + 2cDv + c2Dvv

.
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Hence, the induced optimization problem involving the optimization vector z =
(t1, t2, tf)

T , respectively, z̃ = (ζ1, ζ2, ζ3)
T is given by

min h(tf , z)

s. t. m(tf , z) − mf = 0.

NUDOCCCS provides a solution with switching times t1 = 4.11526, t2 = 46.04061
and the final time tf = 212.90299. The maximal height is h(tf) = 161445.136 and
the jumps of u are given by [u]1 = −7.39657, [u]2 = −4.18838. We depict the control
with the switching function in Figure 1 and the states in Figure 2.
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Figure 1: Optimal control u and switching function σ for the Goddard Problem
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Figure 2: Optimal states h, v, m for the Goddard Problem

Finally, we will verify the SSC for this solution z. Figures 3 and 4 show the first–
order variational derivatives of the states with respect to t1 and t2, respectively,
where yi satisfies IVP (10) with initial condition yi(ti) = (0,−c[u]i/m(ti), [u]i)T ,
i = 1, 2.
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Figure 3: First–order variational derivatives y1
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3 for the Goddard Problem

13



0 50 100 150 200 250

0

0.5

1

1.5

2

2.5
x 10

4

 

 

y2
1
(t)

0 50 100 150 200 250

0

20

40

60

80

100

120

140

 

 

y2
2
(t)

0 50 100 150 200 250
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

y2
3
(t)

Figure 4: First–order variational derivatives y2
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3 for the Goddard Problem

In view of (37), (38) and transversality condition (9), (Ref. 14), we obtain the
following entries in the Hessian matrix of the Lagrangian:

Ltitf = (Hxy
i)(tf ) = −yi

2(tf ), i = 1, 2, Ltf tf = (Hxf)(tf) = g(tf),

whereas the entries Ltitj , 1 ≤ i ≤ j ≤ 2, are given by (35) and (36). Here, D1(H) =
D2(H) = 0 holds due to Corollary 2.2, (Ref. 14). Furthermore, we have

Φti = (φxf
yi)(tf) = yi

3(tf), i = 1, 2, Φtf = (φxf
yf)(tf) = 0.

Note that Φt2 = [u]2 = −using(t−2 ) holds as we have ẏ2
3 ≡ 0 along the interval J3.

Hence, we obtain

Lzz =





−207556.986340 −16491.426723 −1494.323147
−16491.426723 −1235.204985 −128.567507
−1494.323147 −128.567507 9.331096



 ,

Φz = (−51.635009,−4.186749, 0).

Obviously, z is normal but the matrix Lzz is not positive definite on R3. However,
the reduced Hessian matrix defined in (26), (Ref. 14) is given by

Hred = NTLzzN =

(

74.082672 −7.378291
−7.378291 9.331096

)

and hence, positive definite onR2 with eigenvalues 74.9128 and 8.500999. Therefore,
the switching times and the final time are optimal due to the SSC (25), (27), (Ref.
14). We conclude with the remark that NUDOCCCS provides the matrices L̃z̃z̃ and
Φ̃z̃ which lead to similar matrices Lzz and Φz by using formulas (31), (Ref. 14):

Lzz =





−206969.265855 −16492.177383 −1492.002048
−16492.177383 −1239.847916 −128.833926
−1492.002048 −128.833926 9.327778



 ,

Φz = (−51.560409,−4.195724, 0).

The reduced Hessian is obtained as

Hred =

(

73.2412 −7.39793
−7.39793 9.32778

)
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with eigenvalues 74.0863 and 8.48265. In comparison to our method, the maximal
relative difference of the matrix entries is 1.14%, the maximal relative difference of
the eigenvalues is 1.10%.
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singuläre Steuerungen, PhD Thesis, Universität Münster, Germany, 2006.

[13] PONTRYAGIN, L. S., BOLTYANSKII, V. G., GAMKRELIDZE, R. V. and
MISHCHENKO, E. F., The Mathematical Theory of Optimal Processes, Fiz-
matgiz, Moscow, 1961. English translation: Pergamon Press, New York, 1964.

[14] VOSSEN, G., Switching Time Optimization for Bang–Bang and Singular Con-
trols, to appear in Journal of Optimization Theory and Applications, 2009

[15] BRYSON, A. E. and HO, Y. C., Applied Optimal Control, Wiley, New York,
1975.

[16] MAURER, H., Numerical solution of singular control problems using multiple
shooting techniques, Journal of Optimization Theory and Applications, 18, No.
2, pp. 235–257, 1976.

[17] WÄCHTER, A. and BIEGLER, L. T., On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming, Math-
ematical Programming, 106, No. 1, pp. 25–57, 2006.
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