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Abstract: This paper addresses triangle count reduction for regular terrain triangulations. Supported by additional infor-

mation available from cadastre data, non-linear low pass filtering based on wavelet coefficients is applied. The

aim is to generate a simplified view of a city model’s terrain so that still landmarks can be easily recognized.

Height data, that are not critical for visual impressions, are compressed with lower resolution than height data

belonging to landmarks. Results are presented for the German city of Krefeld.

1 INTRODUCTION

Airborne laser scanning of terrain results in a huge

amount of vertices that is not immediately suitable

for drawing a surface triangulation. In this paper an

approach is discussed where additional information

from register data about ground usage is used for data

reduction. From that information we derive precision

that is necessary to draw certain areas. Goal is that the

terrain still should be recognizable while the number

of triangles is minimized.

Wavelet transforms are an often used method for

point cloud compression, filtering and extraction of

bare earth, cf. (Vu and Tokunaga, 2004; Wei and Bar-

tels, 2006; Xu et al., 2007; Hu et al., 2014). Besides

polygon merging, polygon elimination, vertex elim-

ination, edge collapsing, and different retiling tech-

niques, multi-resolution wavelet analysis is one of

the main methods for mesh reduction, cf. (Kalber-

matten, 2010, pp. 45–77), (Mocanu et al., 2011;

Wünsche, 1998; Wiman and Yuchu, 2009). For ex-

ample (Olanda et al., 2014; Bjørke and Nilsen, 2003;

Bruun and Nilsen, 2003) give an overview of wavelet

techniques for simplification of digital terrain mo-

dels. These techniques do not use additional infor-

mation besides height data. Studies were carried

out with biorthogonal average interpolating wavelets.

The property of conserving average height values at

different scales yields good approximations of terrain.

As wavelet transform allows for local frequency

filtering, it is predestined for local, context-sensitive

data reduction. However, knowledge of local proper-

ties of ground is needed. For example, good visible

sharp edges can be detected from height data using

curvature coefficients. Such edges should be main-

tained and not eliminated by filtering. In the example

of a city model we do not have to detect such patterns

in height data as we can use additional information

from a geographic information system (GIS)1. These

cadastre data describe ground usage in terms of poly-

gons that stand for streets, railway lines, bridges, etc.

This approach to local filtering based on digital maps

has been proposed before, for example in (Mahler,

2001, p. 58) in the context of coast lines. New is a set

of heuristic rules to determine the local level of filter-

ing using a simple filtering algorithm that differenti-

ates between low frequencies describing terrain on a

coarse scale and high frequencies needed for details.

Whereas for example in (Bjørke and Nilsen, 2003)

one biorthogonal wavelet transform is used to filter

the whole frequency spectrum, we apply two different

transforms to minimize triangle count:

Local areas like embankments, shallow hills and

heaps that afford a higher quality of rendering will

be filtered using the simplest average interpolating

wavelet that is the discontinuous Haar wavelet. We

apply non-linear filtering using thresholds for wavelet

coefficients. In our scenario the work with continuous

orthogonal or biorthogonal wavelets is not necessary.

In contrast, local support of the Haar wavelet helps to

be very location specific.

Haar wavelet transform leads to artifacts like visi-

ble steps if only low frequencies remain after filtering.

1Case study is based on geographical data, which are
protected by copyright: Geobasisdaten der Kommunen und
des Landes NRW c©Geobasis NRW 2014.



Therefore, areas which do not require detailed ren-

dering will be low pass filtered via continuous linear

spline approximation (that also can be interpreted as

a biorthogonal wavelet transform based on B-splines).

To be more specific, we do this spline based low pass

filtering for the whole scenario and not only for ar-

eas with little detailed information. Reason is, that

local areas with relevant details are not only detected

heuristically on the basis of context information but

also based on deviations between the surface of spline

approximation and unfiltered heights. For these ar-

eas we triangulate with heights obtained from filtering

with the Haar wavelet. Otherwise, heights for trian-

gulation are taken from spline approximation. Spline

approximation gives us a degree of freedom to fur-

ther decrease triangle count while preserving a more

detailed triangulation of areas that are displayed in

higher quality. We modify the precision of spline in-

terpolation to find a minimum number of triangles.

2 TRIANGULATION BASED ON

FILTERED HEIGHTS

Our algorithm consists of two steps. In the first step,

height data are filtered with spline approximation and

wavelet transform as described in subsequent sec-

tions. In a second step, mesh simplification can be

performed more efficient due to the adjusted heights.

For the second step a variety of well established algo-

rithms like edge collapsing can be used, cf. (Garland

and Heckbert, 1997; Silva and Gomes, 2004). Also,

the simplification can be made dependent on distance

to the viewer by using geometry clipmaps as intro-

duced in (Losasso and Hoppe, 2004). However, to test

our approach we decided to use a very basic algorithm

that is described in this section. The algorithm works

with an equidistant mesh where 400 square kilometers

are represented by (5 · 29 + 1)2 grid points. Triangu-

lation is done for each square kilometer separately on

the basis of squares that are split up into two triangles

using a diagonal. We divide a square recursively into

four smaller squares of equal size in case the surfaces

of triangles deviate more than ε from previously fil-

tered heights. A predefined accuracy level ε = 0.2 m

is a good compromise fitting with the accuracy of un-

derlying laser scanning data, but we also show num-

bers for ε = 0.05 and ε = 0.1 m. Because mesh con-

nectivity changes, larger ε might lead to visible gaps

between surface triangles.

To avoid unsightly edges when displaying diag-

onal structures, we use following rule to choose the

diagonal for splitting up a square into two triangles.

We compute the four absolute differences between the

Figure 1: Triangulation based on an equidistant mesh.

arithmetic mean of all four heights of square vertices

and each of the four heights. If P is a vertex with a

maximum difference, then we select the diagonal for

which P is not end point. Further down, this rule is

described with formula (1). Because no orientation of

the diagonal is a-priori favored over the other, we do

not get a type-1 triangulation for which this would be

the case. A typical outcome is shown in Figure 1.

3 LINEAR SPLINE

APPROXIMATION

Multi scale analysis on the basis of piecewise lin-

ear, continuous functions with local support seems to

be adequate in connection with drawing triangulated

surfaces. Therefore, in this section we reduce num-

ber of triangles with the means of a one-dimensional

equidistant L2 best linear continuous spline approx-

imation on different scales. The result is a coarse

model of terrain. Our approach to handle visible de-

tailed structures is described in the next section. Pure

edge collapsing methods like (Garland and Heckbert,

1997; Silva and Gomes, 2004) simplify the mesh in

planar zones. Using spline approximation we signif-

icantly simplify in non planar zones as well. If such

zones are not important for visual impression, we will

not increase their level of detail later.

Using continuous, piecewise linear hat function

Λ(x) :=







1+ x : −1 ≤ x < 0

1− x : 0 ≤ x ≤ 1

0 : x 6∈ [−1,1]

we define scales Vi, Vi ⊂Vi+1,

Vi :=

{

m·2i

∑
k=0

ckΛi,k(x) : c0, . . . ,cm·2i ∈ R

}

,

with Λi,k(x) := m ·2iΛ(m ·2i ·x−k)
∣

∣

[0,1]
where “|[0,1]”

denotes the restriction of a function to the real interval

[0,1] and m is an odd natural number – in our case

m = 5 because of (5 ·29 +1)2 grid points.

Each scale has a B-spline basis of translated and

scaled hat functions. They do not constitute an or-

thogonal set of functions but can be seen in context of

biorthogonal wavelets. For the sake of simplicity, we
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directly compute best L2 approximations and do not

use terms of biorthogonal wavelets.

We simplify a function

fi+1 =
m·2i+1

∑
k=0

ci+1,kΛi+1,k(x) ∈Vi+1

to a coarser function fi = ∑m·2i

k=0 ci,kΛi,k(x) ∈ Vi by

computing the best approximation with regard to L2

inner product < f ,g>:=
∫ 1

0 f (x) · g(x)dx. It is well
known, that coefficients ci,k form the unique solution
of normal equations
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where the tridiagonal matrix on the left side belongs

to R
(m·2i+1)×(m·2i+1), and the matrix on the right side

is element of R(m·2i+1)×(m·2i+1+1). Thus, we can start

on scale n with a representation

fn(x) =
m·2n

∑
k=0

cn,kΛn,k(x)

where cn,k = ak/(m ·2n) for m ·2n+1 given height val-

ues (a0,a1, . . . ,am·2n). By solving normal equations

we successively get coefficients ci,k that can be inter-

preted as heights m ·2ici,k on the coarser grit of scale

i, 0 ≤ i < n.
Tridiagonal systems of linear equations can be

solved with Thomas-algorithm, cf. (Mooney and
Swift, 1999, p. 235), so that we get a pro-
cedure APPROX(ci+1,0, . . . ,ci+1,m·2i+1) that returns

(ci,0,ci,1, . . . ,ci,m·2i). Algorithm 1 shows how we ap-

ply this one-dimensional best approximation to all
rows and then to columns of a matrix. This is similar
to the simplified non-standard wavelet transform that
will be discussed in Section 4. In order to ensure that
the result consists of heights and not of spline coeffi-

cients we have to normalize with factors 1/(m ·2i+1)
and m ·2i, respectively, for example

Figure 2: Reduction of triangles with three steps of linear
spline approximation (triangles are transparent).

B[k,0:m·2i] :=m·2i· APPROX( 1
m·2i+1 ·Ai+1[k,0:m·2i+1]).

As best approximation is a linear calculation, factors

can be shortened to 1
2
, cf. Algorithm 1.

Algorithm 1 Height data reduction. Height ma-

trix Ai+1 ∈ R
(m·2i+1+1)×(m·2i+1+1) is mapped to Ai ∈

R
(m·2i+1)×(m·2i+1) using one-dimensional best ap-

proximations of rows and columns.

procedure HEIGHTDATAREDUCTION(Ai+1)

for k = 0 : m ·2i+1 do
B[k,0:m·2i] := 1

2·APPROX(Ai+1[k,0:m·2i+1])

for k = 0 : m ·2i do
Ai[0:m·2i,k] := 1

2·APPROX(B[0:m ·2i+1,k])

return Ai

Computing of spline approximation consists of

n− i calls of Algorithm 1 so that we get a (m ·2i)×(m ·
2i)-matrix Ai of filtered heights. Figure 2 shows the

result of three calls in our example. The number n− i

of calls will be chosen with respect to the result of

detail analysis such that the overall number of trian-

gles becomes small. From Ai we derive approximate

heights hi( j,k) for all (m · 2n + 1)× (m · 2n + 1) grid

points ( j,k) through interpolation. The given point

( j,k) lies within the coarser net’s square with ver-

tices (x0,y0), (x0 +1,y0), (x0,y0 +1), (x0 +1,y0 +1)
where x0 and y0 are down rounded integers defined

by x0 := ⌊ j/2n−i⌋ if j < m · 2n and y0 := ⌊k/2n−i⌋
if k < m · 2n. For end points with i = m · 2n set

x0 := m ·2i −1, and for k = m ·2n let y0 := m ·2i −1.

In order to compute an approximate height with re-

spect to scale i, we have to triangulate the square by

choosing a diagonal as described in Section 2. Let

h := (Ai[x0,y0]+Ai[x0 +1,y0]+

+Ai[x0,y0 +1]+Ai[x0 +1,y0 +1])/4

be the average of heights. If

max{|Ai[x0,y0]−h|, |Ai[x0 +1,y0 +1]−h|} (1)

≤ max{|Ai[x0 +1,y0]−h|, |Ai[x0,y0 +1]−h|}
then the diagonal connects (x0,y0) and (x0+1,y0+1).
Otherwise (x0,y0 +1) and (x0 +1,y0) are connected.

The surface of this triangulation at point (i, j) de-

fines height hi( j,k). As a result, we get a coarse ap-

proximation of terrain that lacks detailed structures.
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Please also note that even in grid points the heights

might be changed significantly by spline approxima-

tions (see figure 2). Compared to original data, these

changes might lead to increased detail in some areas

after the next processing steps (see lower left corner

of pictures in Figure 3).

4 DISCRETE WAVELET

TRANSFORM

We now deal with areas like heaps, bridge ramps

and embankments that have to be shown in more de-

tail. Despite higher accuracy is required, these areas

also can be smoothened using a low pass filter based

on discrete wavelet transform (DWT) for the Haar

wavelet. In one dimension Algorithm 2 shows how to

transform a vector (a0, . . . ,am·2n−1) (not dealing with

last element am·2n). In each step arithmetic means b j

of pairs of values a2 j and a2 j+1 are computed. They

represent data on a coarser scale. By adding wavelet

coefficients b j+N/2 to the mean value b j, a2 j is recon-

structed. Subtracting b j+N/2 leads to a2 j+1. Wavelet

coefficients can be interpreted as amplitudes of local

frequencies. Haar scaling and wavelet functions form

an orthonormal basis if correctly normed, cf. (Stroll-

nitz et al., 1995). If wavelet coefficients are seen as

scalar factors regarding this wavelet basis, then one

has to divide by
√

2 instead of 2 in Algorithm 2 and

gets coefficients 2−i/2ck as a result of Algorithm 2.

Algorithm 2 One-dimensional DWT for size m ·2n.

procedure STEP(~a)
N :=SIZE(~a)
for j = 0 : N/2−1 do

b j :=
a2 j+a2 j+1

2 , b j+N/2 :=
a2 j−a2 j+1

2

return~b
procedure DWT(~a, m, n)

if n ≤ 0 then return~a
~b := STEP(~a)

~c[0:m·2n−1−1] :=DWT(~b[0:m·2n−1−1], m, n−1)

~c[m ·2n−1 : m ·2n −1] :=~b[m ·2n−1 : m ·2n −1]
return~c

The one-dimensional transform often is extended

to two dimensions by iteration. Another approach,

that covers iteration as well but is not discussed here,

is the use of multi dimensional wavelets. In the lit-

erature two iterative methods are prominent: stan-

dard and non-standard transform, cf. (Strollnitz et al.,

1995). The standard transform is a tensor product

method that applies the one-dimensional transform to

all rows of a matrix A :=
[

a j,k

]

resulting in matrix B:

B = [DWT((a j,0,a j,1, . . . ,a j,m·2n−1))] j=0,...,m·2n−1
.

In a second step each column of B gets transformed

into a column DWT((b0,k,b1,k, . . . ,bm·2n−1,k)), 0 ≤
k ≤ m ·2n −1 of resulting matrix C. However, for our

purpose of reducing height differences it appears to be

a disadvantage of the standard transform that wavelet

coefficients themselves get transformed during col-

umn transforms. For image manipulation instead of

the standard wavelet transform often a non-standard

variant is used that is slightly faster (but of same linear

order). The non-standard transform iterates between

row and column transformation steps and excludes

previously computed wavelet coefficients in follow-

on steps, see Algorithm 3.

Algorithm 3 Two-dimensional non-standard DWT.

procedure NST DWT(A)
m ·2n ×m ·2n := SIZE(A)
if n ≤ 0 then return A

for j = 0 : m ·2n −1 do
B[ j,0:m·2n−1] := STEP(A[ j,0:m·2n−1])

for j = 0 : m ·2n −1 do
⊲ Use 0 : m ·2n−1 −1 for simplified transform.

C[0:m·2n−1, j] := STEP(B[0:m·2n−1, j])

D[0 : m ·2n−1 −1,0 : m ·2n−1 −1] :=
NST DWT(C[0:m·2n−1−1,0:m·2n−1−1]))

D[m ·2n−1 : m ·2n −1,0 : m ·2n −1] :=
C[m ·2n−1 : m ·2n −1,0 : m ·2n −1]

D[0 : m ·2n−1 −1,2n−1 : m ·2n −1] :=
C[0 : m ·2n−1 −1,m ·2n−1 : m ·2n −1]

return D

Even with the non-standard transform, there is

one column transformation step applied to previously

computed coefficients of rows. Therefore, we choose

to use a simplified version of non-standard transform

that has been described in (Kopp and Purgathofer,

1998). The only change to Algorithm 3 is that the

second loop stops at m ·2n−1 −1 instead of m ·2n −1.

The number of column transforms then only is half

the number of row transforms. The advantage is that

height differences immediately become apparent in

terms of coefficients. The associated inverse compu-

tation for a single component a j,k reads:

a j,k = c⌊ j2−n⌋,⌊k2−n⌋ (2)

+
n−1

∑
i=0

[cm·2i+⌊ j2i−n⌋,⌊k2i−n⌋ψ( j2i−n −⌊ j2i−n⌋)

+c⌊ j2i+1−n⌋,m·2i+⌊k2i−n⌋ψ(k2i−n −⌊k2i−n⌋)]
where ψ is the Haar wavelet function

Ψ(x) :=







1, 0 ≤ x < 1
2
,

−1, 1
2
≤ x < 1,

0, else

that determines whether wavelet coefficients have to

be added or subtracted.
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Non-linear low pass filtering consists of cut-

ting off higher summands depending on coefficients

cm·2i+⌊ j2i−n⌋,⌊k2i−n⌋ and c⌊ j2i+1−n⌋,m·2i+⌊k2i−n⌋ during re-

construction of height data with equation (2). To

this end we need context-sensitive sequences of thres-

holds. For a point ( j,k) let (t0, t1, . . . , tn−1) be such

a sequence of non-negative numbers. We investigate

two variants of non-linear filtering:

Variant 1: Let

ã j,k := c⌊ j2−n⌋,⌊k2−n⌋ (3)

+
n−1

∑
i=0

f j,k

(

cm·2i+⌊ j2i−n⌋,⌊k2i−n⌋, i
)

·ψ( j2i−n−⌊ j2i−n⌋)

+
n−1

∑
i=0

f j,k

(

c⌊ j2i+1−n⌋,m·2i+⌊k2i−n⌋, i
)

·ψ(k2i−n−⌊k2i−n⌋)

be a component of the filtered matrix where depend-

ing on point ( j,k) and frequency i

f j,k(x, i) :=

{

x : |x| ≥ ti
0 : |x|< ti.

This variant allows to eliminate intermediate frequen-

cies while higher frequencies might remain. Because

high frequencies have a higher impact on number of

triangles, we compare this approach with

Variant 2: Tails of reconstruction sum in equation

(2) (i. e. high frequencies) get cut off. Let M1 be the

set of indices i ∈ {0, . . . ,n−1} with
∣

∣

∣
c⌊ j2i+1−n⌋,m·2i+⌊k2i−n⌋

∣

∣

∣
≥ ti

and M2 be the subset of {0, . . . ,n−1} where
∣

∣

∣cm·2i+⌊ j2i−n⌋,⌊k2i−n⌋

∣

∣

∣≥ ti.

Then we cut off by using maximum values m1 :=
max(M1 ∪{−1}) and m2 := max(M2 ∪{−1}):

ã j,k := c⌊ j2−n⌋,⌊k2−n⌋ (4)

+
max{m1−1,m2}

∑
i=0

cm·2i+⌊ j2i−n⌋,⌊k2i−n⌋ ·ψ( j2i−n−⌊ j2i−n⌋)

+
max{m1,m2}

∑
i=0

c⌊ j2i+1−n⌋,m·2i+⌊k2i−n⌋ ·ψ(k2i−n−⌊k2i−n⌋).

If we alternate between reconstruction steps for

columns and rows beginning with highest frequency

n− 1 going down to 0 then the formula starts adding

summands when encountering a first coefficient that

exceeds its threshold.

In contrast to JPEG 2000 we do not quantize

wavelet coefficients. For triangle count reduction

quantization does not appear to work as well as omis-

sion of coefficients. All non-zero coefficients of

Haar wavelets define height alterations that might

lead to additional triangles. But quantization does re-

duce storage space and transmission bandwidth, see

(Olanda et al., 2014).

Figure 3: First row: unfiltered height data of a motorway,
last row: filter (4) applied with ε = 0.2 m and δ = 4.0 m
where height deviations are marked with colors in left pic-
ture: The bigger the difference, the darker the color, red
marks points where unfiltered heights are larger than filtered
heights, blue indicates the opposite.

Figure 4: Triangulation based on unfiltered data (first row)
and based on non-linear filtered data (second row) with filter
(4) and ε = 0.2 m, δ = 4.0 m. Last row shows differences
in the same manner as in Figure 3.

5 HEURISTICS BASED LOW

PASS FILTERING

Our aim is to preserve salient structures like

ramps, surroundings of bridges, hills, and shore lines.

Polygons covering areas of these structures are avail-

able from GIS data. Whereas fields can be drawn with

reduced precision, a more detailed drawing is needed

for streets and railway lines. This section deals with

heuristics to implement context-sensitive filtering that

takes care of such differences.

If a difference of unfiltered height and the result

of spline approximation at a point ( j,k) is less than

0.3 m, then this difference is not disturbing. The

threshold of 0.3 m is a parameter different than the

accuracy ε that is used for mesh simplification on the

basis of previously filtered heights. If the difference
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exceeds 0.3 m, in certain circumstances we compute

a more specific height using low pass wavelet trans-

form. In this case, depending on terrain usage and

height of ( j,k), we divide coordinates ( j,k) into three

main classes:

1. Class 1: A point ( j,k) is near to a point P, iff P

is located within a square covering 92 grid points

with ( j,k) at its center. The size of this neigh-

borhood was determined experimentally. Smaller

squares lead to poorer quality whereas larger

neighborhoods increase number of triangles un-

necessarily. In our context, high precision is re-

quired for those points ( j,k) that are near to a

point P which fulfills one of following conditions.

• P is next to a shore line of a river or lake.

• P is part of a railway embankment. If ( j,k) is

an interior point of the embankment then even

extra precision is needed to avoid non smooth

railway tracks.

• P lies within the border polygon of a bridge.

Surroundings of bridges need to be accurate

so that bridges fit into terrain. In our exam-

ple, even the finest triangle size is too coarse

to avoid gaps between bridges and their ramps.

This problem is fixed by extending bridges.

• P lies within the polygon of a street that inter-

sects at least one polygon of a bridge. Such

streets can be part of ramps.

2. Class 2: Terrain of our city model is flat apart

from some heaps and local hills. Therefore, zones

outside class 1 with unfiltered heights that dif-

fer more than a parameter δ from the heights of

spline approximation should be drawn with inter-

mediate precision. Hence heap contours remain

clearly visible. If a forest grows on a hill then even

less precision might be needed as trees hide the

ground. In our example, hilly terrain covered by

trees is limited, so that special treatment of forests

does not improve triangle count significantly. It is

not performed.

3. Class 3: All remaining terrain can be drawn with

poor precision, i. e., heights are taken directly

from spline approximation.

We apply the simplified non-standard wavelet

transform for the grid with m ·2n = 5 ·29 points. Low

pass filtering for points of classes 1 and 2 is done us-

ing specific sets of threshold values (t0, t1, . . . , tn−1).
Height values resulting from low pass filtering re-

place heights computed by spline approximation only

if their distance to spline heights exceeds 0.3 m (less

can’t be seen).

For δ = 4 m good looking results were obtained

with threshold values from Table 1. We determined

1 2 3 4 5 6
0.5

1

1.5

2

2.5x 10
6

Figure 5: Triangle count for different numbers of spline it-
erations and accuracy levels ε, see Table 3. Broken line:
ε = 0.2 m, solid line: ε = 0.05 m (δ = 4.0 m, filter (4)).

the values experimentally. Instead, one could define

a distance measure between exact and filtered heights

(for example an L2 distance) together with separate

local error bounds for areas of class 1 and class 2 as

constraints. Then separately for both classes, varia-

tion of thresholds can yield a set of values for which

the number of triangles becomes minimal.

Our data set contains an error where a hole ap-

pears in the middle of the harbor - probably an artifact

from a ship. Generally, heights of grid points within

polygons defining areas of water need to be constant,

because water surfaces should be flat. Linear spline

approximation and wavelet filtering do not guarantee

this outcome. This is achieved by assigning an av-

erage value to all grid points of water polygons in a

post-processing step.

6 RESULTS

We count triangles but we do not present a global

measure for quality of filtered terrain. Because we al-

low to over-simplify areas that are uncritical for visual

impressions, measures like scene-wide L2 metrics that

involve only height differences between filtered and

unfiltered heights are not sufficient. A comparison of

contour lines as done in (Bjørke and Nilsen, 2003)

might be a better tool but it lacks the ability to distin-

guish between “important” and “unimportant”.

Table 2 shows numbers of triangles in our case

study. Last two columns correspond to results of fil-

tering as described. Compression rates up to a fac-

tor of 5.8 can be reached. We have added the mid-

dle column in order to demonstrate positive effects of

low pass Haar wavelet filtering of detailed areas. It

shows triangle count when using exact heights instead

of heights resulting from wavelet filtering of points

belonging to class 1 and 2. Heights of all other points

still are taken from spline approximation. The com-

parison of the two filter variants (3) and (4) shows that

(4) produces slightly better results. That is no surprise
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Table 1: Thresholds.

coefficient 0 1 2 3 4 5 6 7 8

class 1 0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4

class 1, inner points of railway embankments 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

class 2 0 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5

class 2, forest 0 0.1 0.2 0.2 0.3 20 20 20 20

Table 2: Triangle count for δ = 4 m and three iterations of spline approximation.

triangulation triangles test data triangles spline approx. triangles, detail triangles. detail

accuracy level ε (no filtering) with unfiltered detail filtered with (3) filtered with (4)

0.2 m 2901422 1221938 962012 940214

0.1 m 4564400 1405856 1046510 1035626

0.05 m 6144422 1434602 1067888 1058636

as highest non-zero coefficients determine size of tri-

angles. Non-zero coefficients of frequencies in the

middle do not have this effect.

Finally, we have to determine a good value for the

number of iterations of spline approximation. This

number in turn depends on the rendering of detailed

areas. Too many iterations lead to larger areas where

height deviations exceed δ. The number of triangles

saved through spline approximation then is outnum-

bered by the amount of additional triangles needed to

show details. On the other hand, too few iterations

generate a too detailed spline approximation and too

many triangles. Analysis of detailed areas then be-

comes obsolete. In our setting, for δ = 4 m the low-

est triangle count is obtained with three iterations, see

Table 3 and Figure 5. The smaller δ the larger are

areas of class 2 and the less iterations of spline ap-

proximation can be used for simplification. How δ
influences the number of spline approximations and

triangle count is shown in Table 4 and Figure 6.

With respect to different landscapes, the outcome

of our approach to filtering is shown in Figures 3 and

4.

7 CONCLUSIONS AND FUTURE

WORK

Whereas the MP3 algorithm compresses music

data by utilizing a psychoacoustic model that defines

accuracy of coefficients of a discrete cosine trans-

form, we follow a similar but more elementary ap-

proach to reduce triangle count: Visually less impor-

tant areas are lossy compressed by applying a con-

tinuous best spline approximation. More important

areas are low pass filtered with a wavelet transform.

Thresholds for wavelet coefficients depend on rules
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Figure 6: Triangle count depending on iterations of spline
approximation for different height parameters δ (filter (4),
ε = 0.2 m), see Table 4. Thick solid line: δ = 1 m, dashed
line: δ = 2 m, thin solid line: δ = 4 m, dash-dot line: δ = 6
m.

that take ground usage (cadastre data) and height dif-

ferences into account. This is our “psycho visual”

model. Results are promising. However, it should

be investigated if an even better quality can be ob-

tained by additional smoothing of certain surfaces like

streets. Future work is required to explore the method

in connection with other sets of terrain data in order

to see whether experimentally determined thresholds

still work well. The mesh simplification algorithm

of Section 2 has been chosen for simplicity. Further

work is needed to evaluate the filtering technique as

a pre-processing step that generates input for estab-

lished simplification methods.
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Table 3: Influence of spline approximation on triangle count for δ = 4 m and wavelet filter (4), see Figure 5.

accuracy level ε = 0.05 m accuracy level ε = 0.2 m

6144422 triangles without compression 2901422 triangles without compression

spline triangles spline triangles triangles spline triangles

iterations approximation filtered detail approximation filtered detail

1 1820300 2081120 1201376 1450412

2 544388 1158722 420140 984206

3 170210 1058636 135488 940214

4 48218 1165586 44372 1049498

5 12422 1444874 12308 1312340

6 3164 1838468 3140 1690142

Table 4: Triangle count depending on iterations of spline approximation for different height parameters δ (filter (4), ε = 0.2
m), see Figure 6.

iterations → 1 2 3 4 5 6

δ = 1.0 1529450 1274276 1440734 1813544 2460890 3038612

δ = 2.0 1458482 1044968 1075772 1275776 1676342 2203256

δ = 4.0 1450412 984206 940214 1049498 1312340 1690142

δ = 6.0 1450058 978740 917552 995828 1190306 1489028
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