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Abstract

Random Sample Consensus (RANSAC) is a standard algorithm to recognize planes in point clouds. It

does not require additional context information. However, it might be applied in situations where results can

be improved based on domain knowledge. Such a situation is 3D building reconstruction from airborne laser

scanning data. The normals of many roof facets are orthogonal to footprint vectors. This specific property

helps to estimate roof planes more precisely. The paper describes the adapted RANSAC algorithm. It can be

also used in other applications in which planes are aligned to supporting vectors.
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1 Introduction

Semantic city models consist of building objects that

are composed from walls, roof facets, windows, doors

etc. Each wall and roof facet is defined by a planar

polygon. Typically, such models are represented

in CityGML, see (Gröger et al., 2012). One can

reconstruct roofs from point clouds (often obtained by

airborne laser scanning) using a model-driven, a data-

driven or a hybrid approach that combines model- and

data-driven methods, see (Tarsha-Kurdi et al., 2007b).

In a model-driven approach, parameterized standard

roofs from a catalogue are fitted to segments of the

point cloud. This works well for standard roofs but not

for scenic buildings like churches. Data driven meth-

ods detect single planes and combine them to a wa-

tertight roof (see e. g. (Elbrink and Vosselman, 2009;

Kada and Wichmann, 2013)). To estimate such

planes in point clouds, Random Sample Con-

sensus (RANSAC) is a standard means, cf.

(Yan et al., 2012), (Chen et al., 2014). It is regarded

to lead to better results than the Hough transform

(see (Tarsha-Kurdi et al., 2007a)). Our motivation is

to improve roof plane detection with RANSAC in the

context of data driven building reconstruction.

RANSAC was introduced as a much more

general concept by Fischler and Bolles in

(Fischler and Bolles, 1981). When applied to plane

detection, the algorithm iteratively selects three

(different) points. These points determine a plane if

they are non-collinear. Then the algorithm counts

inliers of this plane. An inlier is a point with a

distance to the plane below a threshold value. In the

original paper, the plane is chosen if the number of

inliers exceeds another threshold value. Otherwise,

the iteration is continued. To avoid this thresh-

old parameter, in a common variant of RANSAC

a predefined number of iterations is completed.

Then a plane with a maximum count of inliers is

chosen. The concept can be easily generalized to

detect other geometric primitives (see the original

paper (Fischler and Bolles, 1981) and, for example,

(Schnabel et al., 2007) for some literature overview).

In fact, RANSAC can be used to fit standard roofs in

a model-driven approach, see (Henn et al., 2013) for

a combination of RANSAC with machine learning.
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Due to our application of data-driven building model

generation, we exclusively have to deal with planes.

An important advantage is that RANSAC is robust

against noise (cf. (Roth and Levine, 1993)) like, in

our case, (sparse) vegetation, chimneys or antennas. A

major disadvantage is computational cost. However,

we do segment areas of possible roof planes prior to

applying RANSAC. Such local point selection does

speed-up the algorithm, see (Chen et al., 2014) and

formula (3). Processing time becomes no issue.

Figure 1: Roof planes were estimated with standard

RANSAC on areas with homogeneous gradient direc-

tions of an airborne laser scanning point cloud: they are

not perfectly aligned with footprint vectors.

RANSAC is independent of additional domain knowl-

edge. It can be improved if additional information are

given. For roof reconstruction, results can be enhanced

by taking into account not only the number of inliers

but also the variance of their distances to the candidate

plane, see (Tarsha-Kurdi et al., 2008). A more general

approach is presented in (Saval-Calvo et al., 2015).

Prior to RANSAC estimation, this method performs

data clustering. Then planes are estimated iteratively

on the clusters and evaluated by using domain spe-

cific constraints between clusters. Based on initial es-

timates, likely inter-plane relations (parallelism, or-

thogonality, etc.) can be established using optimization

methods, e.g., see (Monszpart et al., 2015). In contrast

to these additional alignment procedures, we directly

consider simple, a-priori given domain knowledge

within RANSAC. This knowledge is that most roof

facets’ normals should be orthogonal to a footprint

edge. Footprint vectors are available in cadastral data.

Also, many methods exist to extract footprints from

point clouds or aerial images, cf. (Zeng et al., 2013).

The main contribution of this paper is to utilize this

knowledge to obtain estimated planes with normals

that are properly aligned to footprint edges without

the need of additional aligning procedures, see Fig-

ure 1. This is achieved in two steps, an extension to

RANSAC that is described in the next section, and an

optimization step that minimizes distances between in-

liers and plane with respect to keeping the alignment,

see Section 3. We used these algorithms to compute a

city model. Section 4 summarizes results.

2 Algorithm

2.1 Footprint directions

Let ~p ∈R
2 be a vector, then we denote its two compo-

nents by ~p.x and ~p.y. For vectors in R
3 we denote the

third component by ~p.z. Let G := {~g1, . . . ,~gn} ⊂R
2 be

a set of normalized footprint directions such that

‖~gk‖2 :=
√

~gk.x2 +~gk.y2 = 1.

We cluster footprint edges. Each cluster contains edges

that point into the same or into the opposite direc-

tion or are orthogonal to these directions (see dark

blue vectors in Figure 2). For each cluster, we sum

up the lengths of its edges. A most dominant direc-

tion is given by a cluster with a largest sum. For most

buildings, it is sufficient that set G consists only of the

most dominant direction. However, we also consider

directions of all other clusters that have a sum above

an application dependent threshold value of 2m.

Figure 2: The footprint of the building leads to only one

cluster of footprint directions. This cluster is defined by

the four dark blue vectors. Red vectors are plane normals.

Their projections onto a horizontal plane are drawn in

yellow and have to be aligned to the dark blue footprint

directions. The light blue vectors enclose 45° angles with

the footprint directions and might also serve for align-

ment (cf. Section 4)
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2.2 Segmentation of areas with homogeneous

gradient directions

If one directly uses RANSAC in connection with

complex roof layouts, it is possible to detect spu-

rious planes that do not match with roof facets.

For example, such planes can be supported in-

cidentally by points belonging to different parts

of the roof such that these planes intersect with

several real roof facets that provide inliers. To

avoid such artifacts, one has to consider homo-

geneity of additional local features like gradients

or normals, cf. (Schnabel et al., 2007), (Demir, 2018),

(Poz and Ywata, 2019). RANSAC can be modified by

using a soft threshold voting function based on this

features, see (Xu et al., 2015). Another approach is

to combine RANSAC with computation of Normal

Distribution Transformation cells, see (Li et al., 2017).

We follow the pre-segmentation approach described

in (Goebbels and Pohle-Fröhlich, 2017) and the litera-

ture cited there. Solid structures in airborne laser scan-

ning data basically are 2.5D. This can be utilized to

represent a building’s roof by a height-map image.

The image can be generated based on a 2.5D trian-

gulation of the sparse point cloud. On this height-map,

flat and non-flat roof regions can be distinguished ac-

cording to the lengths of gradients. Then non-flat roof

regions can be further segmented according to homo-

geneous gradient directions, see Figure 3. To this end,

one can determine the minima of a (smoothed) his-

togram of angles between gradients and x-axis. Then

angles between two consecutive minima define a clus-

ter. Gradient directions with angles belonging to the

same cluster are considered as homogeneous. We de-

termine laser scanning points within connected com-

ponents of such homogeneous height-map areas and

apply RANSAC to this rather small filtered point

clouds. Although height-map gradients approximately

point into the same direction, the corresponding fil-

tered point cloud might support multiple planes with

different slopes (see left roof facets in Figure 2). It

also may contain noise. Even a mean gradient direc-

tion might not be sufficiently precise to be used in

plane detection because angle clusters are broad due to

the interpolation technique that leads to height-maps.

Thus one cannot directly fit a plane to a filtered point

cloud by using regression approaches, segmentation

does not make RANSAC unnecessary. However, apart

from excluding spurious planes, filtering to smaller

clouds does improve RANSAC performance very sig-

nificantly.

Figure 3: The left image is a height-map generated from

laser scanning points by interpolation. Grey-values corre-

spond to heights. Gradients on that height-map are visu-

alized through colors in the right image by mapping their

x- and y-coordinates to the red and green channels. Ho-

mogeneously colored areas are used to segment the point

cloud such that RANSAC can be applied on segments.

For each connected component, we detect planes iter-

atively using the algorithm that is described in the next

section. After identifying a plane, we remove its inliers

from the corresponding filtered point cloud. Iterations

terminate if numbers of inliers are below a threshold

value.

2.3 RANSAC with footprint alignment

As standard RANSAC does, our variant also iter-

atively selects three points ~p1, ~p2, and ~p3. Within

each iteration it computes a plane and counts the in-

liers if the selected points are non-collinear. In the

end, a plane with the maximum number of inliers

is selected. To avoid fragmented roofs, the (contin-

ued) selection of planes with largest inlier counts ap-

pears to be more suited than choosing planes with in-

lier counts above a threshold value. So far, there is

no difference to standard RANSAC implementations.

It is also quite common (and already suggested in

(Fischler and Bolles, 1981)) to improve the result by

optimally fitting a plane through the best plane’s in-

lier points. What makes our algorithm different is how

the planes are determined if they are closely aligned to

footprint edges.

Standard RANSAC directly computes a Hesse normal

form that describes a plane through the selected three

points. Using the outer product, one gets a normal

~n0 :=
(~p2 −~p1)× (~p3 −~p1)

‖(~p2 −~p1)× (~p3 −~p1)‖2

3
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and a signed distance to the origin ~0 that is given by

the inner product

ρ0 :=<~n0,~p1 >:=~n0.x ·~p1.x+~n0.y ·~p1.y+~n0.z ·~p1.z.

A point ~p lies on this plane iff <~n0,~p >= ρ0.

We use normals that point upwards (“sign” denotes the

signum function):

~n1 := sign(~n0.z) ·~n0, ρ1 := sign(~n0.z) ·ρ0.

Therefore,~n1.z ≥ 0. If~n1.z ≈ 0 then the plane does not

belong to a roof but to a wall. Thus, we can assume

~n1.z > 0. A flat roof is obtained iff ~n1.z ≈ 1. In this

case, we replace the normal by (0,0,1) and adjust the

distance ρ1 to~0 by using the arithmetic mean of all in-

liers’ z-coordinates (see Algorithms 1 and 3). In what

follows we discuss the main case 0 <~n1.z < 1.

Most but not all roof facets might be aligned to foot-

print edges. We replace the normal ~n1 by an adjusted

one that is orthogonal or parallel to a footprint direc-

tion iff the difference angle between both normals is

small. To this end, let α > 0 be a threshold angle near

0. We determine angles between footprint directions

~gk ∈ G (as well as orthogonal vectors (−~gk.y,~gk.x))
and projections of the normal vectors to the x-y-plane

by computing inner products. To this end, let ~n2 :=
(~n1.x,~n1.y)/‖(~n1.x,~n1.y)‖2. For k ∈ {1, . . . ,n} let

ck := ~n2.x ·~gk.x+~n2.y ·~gk.y,

dk := ~n2.x · (−~gk.y)+~n2.y ·~gk.x.

• If |ck0
| = max{|ck|, |dk| : k ∈ {1, . . . ,n}} and

|ck0
|> cos(α) then we change the direction of the

normal in the x-y-plane depending on the sign of

ck0
. Its new normalized direction is

~h := sign(ck0
) ·~gk0

.

• Otherwise, if |dk0
| = max{|ck|, |dk| : k ∈

{1, . . . ,n}} and |dk0
| > cos(α), we change the

direction according to

~h := sign(dk0
) ·~gk0

.

• Otherwise, no footprint vector can be used for

alignment. However, some roofs have facets with

normals that, if projected to the ground plane,

enclose 45° angles with footprint edges. To also

consider these directions, one could now re-

place directions~gk by [~gk+(−~gk.y,~gk.x)]/
√

2, re-

compute ck and dk and re-perform previous two

cases.

For the first two cases, we replace the normal~n1 with

~n := (l ·~h.x, l ·~h.y,
√

1− l2) (1)

such that ‖~n‖2 = 1. Please note that the z-component

can be chosen to be positive because~h points approx-

imately into the same direction as ~n1 within the x-

y-plane. To specify parameter l, let indices i 6= j ∈
{1,2,3} be chosen such that b, defined by

a := (~pi.x−~p j.x)~h.x+(~pi.y−~p j.y)~h.y,

b :=
|a|

√

(~pi.x−~p j.x)2 +(~pi.y−~p j.y)2
,

becomes maximal. Due to non-collinearity of points

and because walls are excluded, b > 0 and vectors

(~pi.x−~p j.x,~pi.y−~p j.y) and~h are as close as possible

to being parallel. Then parameter 0 ≤ l < 1 is deter-

mined such that the vector ~pi−~p j becomes orthogonal

to~n. Thus, we require

0 =< (~pi −~p j),~n >= l ·a+
√

1− l2(~pi.z−~p j.z)

such that l2a2 = (1− l2)(~pi.z−~p j.z)
2 and

l =
|~pi.z−~p j.z|

√

a2 +(~pi.z−~p j.z)2

if ~pi.z−~p j.z 6= 0 and l := 0 otherwise. The adjusted

Hesse normal form then is given by normal~n, see (1),

and signed distance ρ :=< ~pi,~n > between~0 and the

plane. Due to construction, the two points ~pi and ~p j

lie on this aligned plane. Algorithm 1 summarizes the

computation of plane parameters.

As in many RANSAC implementations, the plane with

the largest number of inliers of all iterations is se-

lected. Inliers of a plane with parameters (~n,ρ) are

points of the point cloud (segment) P with a shortest

distance to the plane that is less then a threshold value

δ , i.e., a point ~p ∈ P ⊂ R
3 is an inlier with respect

to ~n, ρ , and δ iff | < ~p,~n > −ρ| < δ , see Algorithm

2. Let I be the corresponding set of inliers. Instead

of just counting inliers, one could also consider the

variance of distances between inliers and their plane

to select a best plane, cf. (Tarsha-Kurdi et al., 2008).

However, our post processing procedure in Section 3

4
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Algorithm 1 Estimation of a plane’s Hesse normal

form; the algorithm returns a pair of normal vector and

signed distance between plane and origin

procedure GETPLANEPARMS(~p1, ~p2, ~p3, G)

~n0 := (~p2−~p1)×(~p3−~p1)
‖(~p2−~p1)×(~p3−~p1)‖2

ρ0 :=<~n0,~p1 >
if~n0.z ≈ 0 then return (~n0,ρ0) ⊲ wall plane

~n1 := sign(~n0.z) ·~n0

ρ1 := sign(~n0.z) ·ρ0

if~n1.z ≈ 1 then return ((0,0,1),ρ1) ⊲ flat roof

~n2 := (~n1.x,~n1.y)/‖(~n1.x,~n1.y)‖2.

m :=−1

for~g ∈ G do

c :=~n2.x ·~g.x+~n2.y ·~g.y
if |c|> cos(α)∧|c|> m then

~h := sign(c) ·~g
m := |c|

d :=~n2.x · (−~g.y)+~n2.y ·~g.x
if |d|> cos(α)∧|d|> m then

~h := sign(d) ·~g
m := |d|

if m =−1 then return (~n1,ρ1)

⊲ normal can be adjusted

~r1 := ~p1 −~p2,~r2 := ~p2 −~p3,~r3 := ~p1 −~p3

for i ∈ {1,2,3} do

ai :=~ri.x ·~h.x+~ri.y ·~h.y
bi := |ai|/

√

~ri.x2 +~ri.y2

for i ∈ {1,2,3} do

if bi = max{b1,b2,b3} then

a := ai,~r :=~ri, ~p := ~pi

if~r.z = 0 then l:=0;

else

l := |~r.z|√
a2+~r.z2

~n := (l ·~h.x, l ·~h.y,
√

1− l2)
return (~n,< ~p,~n >)

already does minimize variance of distances between

inliers and plane. Depending on available data, other

strategies for defining inliers might be helpful. In case

of a colored point cloud, one could additionally match

color information, see (Adam et al., 2018). Instead of

searching for inliers in the original point cloud, we also

tested with points obtained from the 2.5D height-map,

equidistantly arranged in the x-y-plane. We expected

that, due to interpolation, some artificial step edges be-

tween roof facets could be avoided. But only in rare

cases a different plane was selected as best fitting.

It is well known (see (Fischler and Bolles, 1981)) that

standard RANSAC at least needs

i ≥ ln(1− p)/ ln

(

1−
( |I|
|P|

)3
)

(2)

iterations to find three inlier points of a specific plane

with a probability of at least p. For this specific plane,

|I|/|P| is the probability to randomly select one inlier,

where |I| is the number of all inliers of this plane and

|P| is the size of the point cloud. Thus 1− (|I|/|P|)3

is the probability to independently draw three points

from P such that at least one is no inlier. The chance

that this happens in each of i independent experiments

is (1− (|I|/|P|)3)i. This probability has to be less than

1− p which gives (2). The exponent 3 equals the num-

ber of points needed to define the geometric primitive.

The formula does not consider that collinear inliers

could be selected. To reduce the probability of getting

collinear points, it is better to draw three points with-

out repetition, i.e., to draw three different points. Then

points are no longer drawn independently. Instead of

multiplying probabilities to get p3, the probability

(|I|
3

)

(|P|
3

)
=

|I|
|P| ·

|I|−1

|P|−1
· |I|−2

|P|−2

now is given by the hypergeometric distribution, i.e.,

i ≥ ln(1− p)/ ln

(

1− |I|
|P| ·

|I|−1

|P|−1
· |I|−2

|P|−2

)

. (3)

In order to use formulas (2) or (3) as a lower bound

for the number of RANSAC iterations, one has to con-

servatively estimate inlier ratio µ := |I|
|P| and replace

unknown |I| by µ · |P|.

But even three pairwise different points could lie on

a straight line. Since the two-dimensional volume of

5
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any finite union of straight lines is zero, the probabil-

ity of randomly scanning a point that precisely lies on

at least one line through any two previously scanned

points is zero. However, laser scanners do not place

points randomly but in stripes. Then the probability of

finding three collinear inliers depends on unknown ge-

ometric properties. For example, if we assume a reg-

ular
√

|P| ×
√

|P| grid for x-y-coordinates (that oc-

curs if one applies RANSAC on a 2.5D height-map)

then at most
√

|P| inliers can lie on a line. We assume
√

|P|< |I|. Then with

ln(1− p)/ ln

(

1− |I|
|P| ·

|I|−1

|P|−1
· |I|−

√

|P|
|P|−2

)

iterations, the probability to get three non-collinear in-

liers is above p.

Even if three non-collinear points are drawn, they lie

within threshold distance but probably not exactly on

the specific plane we are looking for. A plane that

is supported by the three points might have an inlier

count that differs from the count of the specific plane.

This are all reasons to consider additional iterations.

Algorithm 2 RANSAC for roof plane detection in

point cloud P using footprint directions in set G. Num-

ber of iterations is i, threshold value δ > 0 is used to

define inliers

procedure GETINLIERS(~n, ρ , P, δ )

I := /0

for ~p ∈ P do

if |<~p,~n >−ρ |< δ then

I := I ∪{~p}
return I

procedure RANSAC(P, G, i, δ )

Ibest := /0, k = 1

while (k ≤ i)∧ (|Ibest|< |P|) do

randomly select different points ~p1,~p2,~p3 ∈ P

if det[~p1,~p2,~p3] 6= 0 then ⊲ non-collinear points

(~n,ρ) := GETPLANEPARMS(~p1, ~p2, ~p3, G)

if~n.z 6≈ 0 then ⊲ no wall

I:=GETINLIERS(~n, ρ , P, δ )

if |I|> |Ibest| then

Ibest := I,~nbest :=~n, ρbest := ρ

k := k+1

if |Ibest|> 2 then return (~nbest,ρbest, Ibest)
else

return “no plane found”

3 Optimizing planes’ slopes

RANSAC provides a plane with a maximum number

of inliers. However, there might exist a different plane

with the same set of inliers but smaller distances be-

tween inliers and plane. While keeping alignment to

footprint vectors, we find such a “better” plane by ap-

plying a principal component analysis (PCA), see Fig-

ure 4. For building model reconstruction, most esti-

!δ

!δ

Figure 4: The bold red and blue lines visualize cuts

through planes that are already aligned to a footprint vec-

tor. Both planes have the same inliers (black dots) with

respect to a threshold value δ . But the sum of squared

distances (squared lengths of thin blue lines in case of the

blue plane) is not minimal for both planes. A best fitting

plane should be computed.

mated planes are indeed aligned to footprint directions

(see Section 4). Thus, we have to find an optimal value

for a parameter l such that shortest distances between

inliers and plane become minimal with a normal vec-

tor

~nopt :=
(

l · ~d.x, l · ~d.y,
√

1− l2
)

(4)

where ~d = (~n.x,~n.y)
‖(~n.x,~n.y)‖2

. This means that we maintain

the direction of the normal vector with respect to its

x- and y-coordinates. If aligned to a footprint direc-

tion, a plane keeps aligned. To find l, we orthogo-

nally project all inliers to the plane spanned by vec-

tors (~d.x, ~d.y,0) and (0,0,1). The origin~0 lies on this

plane. For numerical stability it might be required to

shift the plane by adding an inlier such that numbers

become smaller. We add inlier ~q1 which is element of

the set I := {~q1, . . .~qm} ⊂ R
3 of all inliers. We obtain

the 2D set of projections {~t1, . . .~tm} ⊂ R
2 via

~tk.x := < (~qk −~q1),(~d.x, ~d.y,0)>,

~tk.y := < (~qk −~q1),(0,0,1)>=~qk.z−~q1.z.

6
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Figure 5: Test data: Our variant of RANSAC was used to estimate roof facets of this model of a square kilometer of

the city of Dortmund

For this set, we perform a PCA to find the best fitting

line. To obtain the covariance matrix

C =

[

σ2
x σxy

σxy σ2
y

]

,

let~t := 1
m

∑m
k=1

~tk be the center of gravity of the 2D

points,

σ2
x :=

∑m
k=0(~t.x−~t.x)2

m−1
, σ2

y :=

∑m
k=0(~t.y−~t.y)2

m−1
,

σxy :=
1

m−1

m
∑

k=0

(~t.x−~t.x)(~t.y−~t.y).

A largest eigenvalue of C or (m−1)C is

λ =
σxx +σyy

2
+

√

(σxx +σyy)2

4
− (σxxσyy −σ2

xy),

a corresponding eigenvector~e is given via (−σxy,σ
2
x −

λ ) or (σ2
y −λ ,−σxy) if non-zero. Parameter l of ~nopt

in (4) has to be chosen such that (l,
√

1− l2) becomes

orthogonal to~e, i.e.,

l ·~e.x+
√

1− l2 ·~e.y = 0

such that l2 ·(~e.x)2 =(1− l2) ·(~e.y)2. The positive solu-

tion is l = |~e.y|/‖~e‖2. With the optimized normal~nopt,

the signed distance between plane and~0 has to be up-

dated as well. To this end, we use the center of gravity

of projected points:

ρopt :=< (~q1.x+~t.x · ~d.x,~q1.y+~t.x · ~d.y,~t.y),~nopt > .

The optimization procedure is summarized in Algo-

rithm 3.

After all roof planes of a building are determined,

the data-driven approach of roof reconstruction can be

Algorithm 3 Optimization of plane parameters

procedure OPTIMIZEPLANE(~n, ρ , I)

~d = (~n.x,~n.y)
‖(~n.x,~n.y)‖2

T := /0 ⊲ T is a multiset or list.
~t :=~0 ∈ R

2

select an inlier~q1 ∈ I.

for~q ∈ I do
~t.x :=< (~q−~q1),(~d.x, ~d.y,0)>
~t.y :=~q.z−~q1.z.

T := T ∪{~t},~t :=~t +~t,

~t :=~t/|I|,
if~n.z = 1 then return (~n,~t.y)
else

s2
x := s2

y := sxy := 0

for~t ∈ T do

s2
x := s2

x +(~t.x−~t.x)2, s2
y := s2

y +(~t.y−~t.y)2

sxy := sxy +(~t.x−~t.x)(~t.y−~t.y)
λ :=

sxx+syy

2
+

√

(sxx+syy)2

4
− (sxxsyy − s2

xy)

~e1 := (−sxy,s
2
x −λ ),~e2 := (s2

y −λ ,−sxy)
if ‖~e1‖2 > ‖~e2‖2 then~e :=~e1

else

if ‖~e2‖2 > 0 then~e :=~e2

else~e := (1,0)

l := |~e.y|
‖~e‖2

~nopt :=
(

l · ~d.x, l · ~d.y,
√

1− l2
)

ρopt :=< (~q1.x+~t.x · ~d.x,~q1.y+~t.x · ~d.y,~t.y),~nopt >
return (~nopt,ρopt)
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Figure 6: Boxplot of best planes’ inlier ratios

combined with model knowledge. Typically, a build-

ing only has very few different roof slopes. By cluster-

ing z-components of normals, similar z-values can be

adjusted to a mean value. Also, similar facade heights

can be balanced by adjusting distances of planes to the

origin.

4 Results

We tested with data of one square kilometer. It belongs

to the city of Dortmund and covers zone 32U UTM-

interval [393000,394000]× [5703000,5704000], see

Figure 5. This area consists of 1,591 buildings or

building parts. We chose α = 5° as a threshold angle

for aligning with footprint directions and δ = 0 1m

as threshold distance to define inliers. This value is

compliant with precision of airborne laser scanning.

Due to pre-segmentation and analysis of our data, we

conservatively expected more than µ = 30% of points

to be inliers of the largest plane to be detected with

each call of RANSAC. For large point clouds P we can

approximate (3) with (2). If we want to find three in-

liers of the largest plane with a probability of 99 999%

then we should consider more than 420 iterations. For

conservative results, we used 500 RANSAC iterations

in which three pairwise different (but not necessarily

non-collinear) points were selected. With these param-

eters and because of pre-segmentation, detected planes

had a mean inlier ratio of 89 5%, see Figure 6. The

0 25-quantile is 81 9% such that only 15 iterations

would have been sufficient to detect 75% of model

planes.

When considering only footprint directions with a

minimum length of 2 m, 7,616 facet normals of non-

flat roofs were at least slightly aligned. The remaining

2,845 facets of non-flat roofs pointed into different di-

rections.

The mean change of x-y-projections of best fitting

planes’ normals was 1 5°. The diagrams in Figure 7

show the distribution of smallest angles between foot-

print edges and projected original, non-adjusted nor-

mals of best fitting planes.
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Figure 7: Minimum angles between estimated plane nor-

mals (projected to the x-y-plane) and footprint directions
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Figure 8: Angle changes due to PCA optimization

The effect of PCA normalization for non-flat roofs is

shown in Figure 8. The average change of normal an-

gles is 1 67°. Indeed, the optimization step does con-

tribute to the quality of estimated planes.

If one also allows alignment to lines that enclose 45°

angles with footprint vectors then 7,926 out of 10,461

non-flat roof facets were aligned.
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5 Conclusions

The described method is limited to planar roof facets.

Although changes of models are not immediately vis-

ible, more precise roof geometries can be obtained by

aligning normal vectors to footprint directions. This

makes it easier to maintain planarity of roof facets

when combining them without introducing artificial

step edges. In some cases, aligned roof facets also re-

duce the number of roof polygons. Alignment can be

used to speed-up RANSAC. In our application, most

but not all the planes can be aligned to a footprint vec-

tor. However in case of alignment, the footprint vector

could be selected due to our pre-segmentation accord-

ing to gradient angles. If such additional information

is available for all planes to be detected, one can use

two instead of three (non-collinear) points to define a

plane. Then only

ln(1− p)

ln
(

1− |I|
|P| ·

|I|−1

|P|−1

) <
ln(1− p)

ln
(

1− |I|
|P| ·

|I|−1

|P|−1
· |I|−2

|P|−2

)

iterations are required to find different inliers of the

plane with probability p, see (3). Future work could

incorporate texture information from oblique areal im-

ages.
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