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INTRODUCTION
Many cities provide a textured 3D city model for planning and simulation purposes.
Usually, the textures are automatically taken from oblique aerial images showing occlu-
sions by, e.g., vegetation. These objects have to be segmented and then removed from
facade textures. In this study, we investigate the ability of different non-specialized
inpainting algorithms to continue facade patterns in occluded facade areas. In particu-
lar, very useful results are obtained with the neural network “DeepFill v2” trained with
transfer learning on freely available facade datasets and the “Shift-Map” algorithm.

ALGORITHMS
We tested six algorithms, including two standard algorithms from the OpenCV library,
two algorithms from the xphoto package of OpenCV, and two deep neural networks.

Local, Diffusion-based Inpainting Algorithms of OpenCV
Both Navier-Stokes and Telea algorithms continue the patterns inward from the
boundary of the occluded regions.

Global Inpainting/Texture Synthesis Algorithms from the Xphoto Module
A shift-map consists of offsets that describe how pixels are moved (shifted, trans-
formed) from a source to a target image region. By choosing an occluded area as a
source, the shift map algorithm computes an optimized shift-map to do example-
based inpainting.
Frequency Selective Reconstruction (FSR) uses Fourier analysis to reconstruct
the missing pixels. Unfortunately, the current implementation of FSR has some prob-
lems with large images, so we had to scale them down in order to get results.

DeepFill V2 Algorithm
The ”Free-Form Image Inpainting with Gated Convolution” [2] network is based on
gated convolution. This allows the network to learn how to apply convolution kernels
to incomplete data including a mechanism for dynamic feature selection. It consists
of three subnets: a network for coarse inpainting, a contextual attention network for
adding details, and a third network which computes an adversarial loss that is linearly
combined with an l1 loss.

GMCNN Algorithm
The "Generative Multi-column Convolutional Neural Network" [1] (GMCNN) consists
of three sub-networks, where only the first one is used for inpainting. The second
sub-network implements the local and global discriminators for adversarial training and
the third sub-network is a pre-trained VGG network that provides feature values for a
feature-based loss.

GROUND TRUTH AND TRAINING DATA
We tested all algorithms on facade images from a textured 3D model of the city of
Krefeld in Germany. The ground truth consisted of 206 images that were free of
occlusions. These images were assigned various occlusion masks showing trees and
different geometric shapes in various sizes.
The neural networks were pre-trained with images of the “places2’ dataset. Then
transfer learning was applied based on the “Ecole Centrale Paris Facades Database”,
“FaSyn13”, and “CMP” datasets.8 Fritzsche et al.
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Fig. 3. Distribution of distances between ground truth and inpainted images of the entire test
dataset; DeepFill v2 (S1) relates to equally weighted loss components and DeepFill v2 (S2) shows
the result for a higher weighted l1 loss

These distances are normed to be in the interval [0,1]. The box plots in Figure 3 show
how the distances are distributed for each algorithm. A high distance value might in-
dicate a bad inpainting result but a pixel-wise comparison might also lead to signifi-
cant distances although the images appear similar. Instead of using more sophisticated
metrics to measure similarity, the quantitative evaluation can be accompanied by a vi-
sual qualitative inspection. For example, the Shift-Map algorithm copies rectangular
structures that appear consistent even if they do not fit. But a blurred region attracts
attention even if it is closer to the ground truth. For the images in Figure 4, distances
distall are listed in Table 1 and distances distmask are shown in Table 2. While distmask
only measures how well mask regions can be reconstructed, distall also takes into ac-
count changes outside the mask region, e.g., along its border. The data show that the
algorithms focus the changes to the mask regions. Although the distance measures are
normalized with respect to the image size, a comparison of the FSR values calculated
on downscaled images with those of the other algorithms is somewhat limited. In GM-
CNN results, inpainted regions tend to show a slightly different color distribution. This
leads to large distance values. We did not investigate if better results can be obtained
with a different choice of hyperparameters and training data.

Figure 2 illustrates the influence of different mask types. If the hidden regions were
not described by completely filled contours but were interrupted by many non-hidden
points, most algorithms worked better.

Figure 1: Distribution of normalized l2 distances between ground truth and inpainted
images of the entire test dataset; DeepFill v2 (S1) relates to equally weighted loss
components and DeepFill v2 (S2) shows the result for a higher weighted l1 loss

RESULTS
DeepFill v2 delivered excellent results, but also the Shift-Map algorithm performed well.
This is expected to be true for the FSR algorithm as well, once a stable implementation
is available. The algorithms can be used without problem specific adjustments. There
seems to be no longer a need for highly specialized facade inpainting algorithms.

Image Navier- Telea Shift- FSR DeepFill DeepFill GMCNN
Stokes Map v2 (S1) v2 (S2)

1 0.06 0.117 0.051 0.014 0.029 0.027 0.589
2 0.059 0.061 0.086 0.047 0.054 0.059 0.696
3 0.126 0.133 0.215 0.097 0.094 0.082 0.283
4 0.09 0.107 0.089 0.055 0.053 0.049 0.574
5 0.168 0.157 0.13 0.108 0.174 0.146 0.463
6 0.194 0.175 0.263 0.228 0.168 0.157 0.42
7 0.123 0.143 0.155 0.073 0.09 0.086 0.492
8 0.115 0.119 0.107 0.073 0.102 0.101 0.542
9 0.18 0.17 0.145 0.178 0.17 0.166 0.5
10 0.219 0.213 0.222 0.19 0.211 0.198 0.537
11 0.175 0.164 0.2 0.136 0.185 0.149 0.485
12 0.136 0.128 0.069 0.13 0.098 0.089 0.365
13 0.016 0.026 0.013 0.006 0.017 0.018 0.795
Table 1: Normalized l2-distance between ground truth images and inpainted images
restricted to the occluded regions. Bold and underlined numbers indicate best and
second best results. Numbers relate to images in Figure 2
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Fig. 5. Comparison of inpainting algorithms; DeepFill was trained with equal weighted loss func-
tions (S1) and with l1 loss weighted higher than GAN loss (S2)
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Figure 2: Comparison of inpainting algorithms
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