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Abstract Fourier descriptors are powerful features for
the recognition of two-dimensional connected shapes.
In this article, we propose a method to define Fourier
descriptors even for broken shapes, i.e., shapes that can
have more than one contour. The method is based on
the convex hull of the shape and the distance to the clos-
est actual contour point along the convex hull. We de-
fine different invariant Fourier descriptors for this three-
dimensional representation of a two-dimensional shape
and compare them on different data sets. The recogni-
tion rates are comparable to normal Fourier descriptors
while the new scheme at the same time offers the option
to also deal with broken contours. We also discuss and
evaluate different normalisation schemes that make the
descriptors invariant under scale and rotation.

Keywords Image Processing · Shape Description ·
Object Recognition

1 Introduction

Shape descriptors are numbers that are computed from
a two-dimensional shape. In some cases, the set of num-
bers is complete in the sense that the original shape can
be reconstructed from the shape descriptors [1, 2], but
even in these situations, only a subset of the shape de-
scriptors is typically used in practical applications. The
shape descriptors can thus be considered as an approx-
imative description of the shape such that shape sim-
ilarity somehow corresponds to similarity of the shape
descriptors. Consequently, they can be used for object
recognition and object similarity detection.
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There are two main categories of shape descriptors:
volume-based and contour-based. Volume based descrip-
tors use all pixels of the object and include descrip-
tors like geometric moments [3] or Zernike moments
[4]. Contour based descriptors compute the descriptors
only from the shape boundary and include descriptors
like curvature scale space [5] or Fourier descriptors [6].
Which approach is better depends on the application,
especially whether the internal content of the shape or
the boundary is more important.

The term Fourier descriptors covers a wide variety
of shape descriptors, which have in common that they
compute the discrete Fourier transform of some repre-
sentation of a closed contour. They vary in the repre-
sentation (or “signature” [6]) of the contour and in the
additional manipulations to achieve invariance proper-
ties under certain geometric transformations. Typically,
invariance under translation, scaling, and rotation is
achieved, but there are also Fourier descriptors that
are invariant to shearing [7]. As Fourier descriptors re-
quire the extraction of a closed contour from the shape,
they are restricted to connected shapes and cannot be
applied to possibly broken objects.

To overcome this restriction, we define a new three-
dimensional contour signature function, based upon the
convex hull of the shape and the distance of the convex
hull to the closest point of the shape. As the convex hull
is defined for arbitrary shapes, including broken shapes,
the new shape signature no longer requires connectivity
of the shape. Based upon this shape signature, we de-
rive different invariant Fourier descriptors and compare
their performance on different data sets.

This paper is organised as follows: in Sec. 2 we give
an overview over different Fourier descriptors described
in the literature for closed contours of unbroken shapes.
In Sec. 3 we describe our new method for a contour rep-
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resentation of broken shapes and define different meth-
ods to obtain invariant Fourier descriptors from this
representation. Secs. 4 and 5 contain the results of a
comparative evaluation of the different Fourier descrip-
tors and the conclusions drawn therefrom.

2 Fourier descriptors

Every connected object has a closed contour that can
be represented as a sequence of the pixel coordinates
x(t), y(t) where t = 0, . . . N−1. A popular algorithm for
contour extraction can be found in [8]. The coordinates
can be considered to be sampling values

(x(t), y(t)) = f

(
2π
N
t

)
(1)

of a continuous, closed curve f : [0, 2π] → R2 such
that f can be extended continuously to a 2π-periodic
function. When the function f (or, more generally, any
signature function g(x(t), y(t)) derived from the coordi-
nates) is expanded into a Fourier series, a fixed number
of discrete Fourier coefficients approximately represents
the contour shape. This allows for data reduction.

This is the basic idea underlying all Fourier de-
scriptors suggested in the literature. They vary however
in the contour representation g(x(t), y(t)) used as the
starting point for the Fourier expansion. The represen-
tations typically fall into one of the following categories:

– Complex representation: x(t) + j · y(t) ∈ C
– Multidimensional representation: (x(t), y(t)) ∈ R2

– Scalar representation: (x(t), y(t)) 7→ g(t) ∈ R.

Depending on the contour representation, the result-
ing Fourier coefficients will behave differently under the
geometric transformations scaling, rotation, and start
point shift. When the contour points are transformed by
any of these operations, the Fourier coefficients change
according to simple rules, which can be used to define
invariant descriptors.

In the following subsections, we give an overview
over the three categories and the normalisation ap-
proaches proposed in the literature to achieve invari-
ance under these geometric transformations.

2.1 Complex contour representation

When the two dimensional plane is interpreted as a
complex plane, the contour is represented by a sequence
of complex numbers z(t) = x(t) + j · y(t) which has the
discrete Fourier expansion (t = 0, . . . , N − 1)

z(t) =
N−1∑
k=0

ck exp(j2πkt/N) (2)
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Fig. 1 Absolute values of the Fourier coefficients ck and the
reconstruction of a contour from only the coefficients k ≤ 8
and k ≥ N − 8.

with discrete Fourier coefficients

ck =
1
N

N−1∑
t=0

z(t) exp(−j2πkt/N) (3)

When the coefficients ck are interpreted as numerical
approximations of the Fourier coefficients f̂(k) of the
continuous curve f(τ) = x(τN/2π) + jy(τN/2π) in (1)

f̂(k) :=
1

2π

∫ 2π

0

f(τ) exp(−jkτ) dτ, k ∈ Z

then the connection between f̂(k) and the discrete
Fourier coefficients (3) is given by

f̂(k) ≈ ck for 0 ≤ k < N

2
(4)

f̂(−k) ≈ cN−k for 1 ≤ k < N

2

According to the Riemann-Lebesgue lemma [9, p. 45],
it is

lim
|k|→∞

f̂(k) = 0

so that coefficients for large values of |k| are small and
only describe less important details. Cutting off higher
frequencies |k| in (4) is thus equivalent to omitting co-
efficients in the middle of the vector (c0, . . . , cN−1). An
example can be seen in Fig. 1.

The zeroth coefficient c0 is the centre of gravity
of the contour. As the smallest period of the contour
curve f is the length 2π of the parameter interval,
we can assume that at least c1 6= 0 or cN−1 6= 0.
Which of these two coefficients actually is guaranteed
to be nonzero depends on the orientation of the con-
tour path: for Pavlidis’ algorithm [8], e.g., it is c1 6= 0.
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In general, it is however not guaranteed that both coef-
ficients are nonzero, as can be seen from the unit circle
f(t) := (cos(t), sin(t)), which has coefficients c1 = 1,
cN−1 = 0, N ≥ 3.

Based on elementary properties of the discrete Fou-
rier transform, simple rules for the change of the coef-
ficients ck under translation, scale and rotation imme-
diately follow. Let ck be a coefficient calculated before
any of the following operations. Then the geometric op-
erations have the following effects:

Translation: Adding the same complex number u to
all points z(t) leads to new coefficients (c0 +
u, c1, . . . , cN−1).

Scale: Multiplying all points z(t) with the same real
factor d > 0 leads to new coefficients d · ck.

Rotation: Rotation in the complex plane is the same
as multiplying all points z(t) with a factor exp(jϕ),
where ϕ is the angle of rotation. This leads to new
coefficients exp(jϕ)ck.

Start point shift: Starting the contour at a different
point results in a cyclic shift of vector (z(t))N−1

t=0 .
If the index shift is m, then the new coefficients are
exp

(
jkm 2π

N

)
ck.

To achieve translation invariance, the first coefficient c0
can be discarded because it is the only one that depends
on translation. For scale invariance, all coefficients can
be divided by the absolute value of a non-zero coeffi-
cient |cr|, r > 0. Usually, a fixed coefficient r is chosen,
e.g. r = 1, but our experiments in Sec. 4.3 have shown
that it is better to always choose the coefficient cr with
the largest absolute value.

Since | exp(jϕ)| = | exp(jkm2π/N)| = 1, a simple
approach to obtain a rotation and shift invariant de-
scriptor is to completely drop the phase information
and to only use the absolute values of the Fourier coef-
ficients. This approach was used, e.g., by Zhang & Lu
in their comparative study [6]. The resulting absolute
value descriptors are

|lk| :=
|ck|
|cr|

for k = 1, N − 1, 2, N − 2, . . . (5)

It is also possible to define invariant Fourier descrip-
tors that still keep the phase information, as already
observed by Dimov & Laskov [10]. Let cr 6= 0 and
cs 6= 0, r 6= s, be two non-zero coefficients with po-
lar angles αr = arg(cr) and αs = arg(cs). Rotation
invariance is achieved by multiplying each coefficient
with exp(−jαr), and shift invariance is established by
replacing the polar angle αk = arg(ck) with sαk − kαs.
Combining these phase normalisations yields the invari-

ant descriptors

lk :=
|ck| exp(j(s− r)[αk − αr])
|cr| exp (j(k − r)[αs − αr])

(6)

=
|ck|
|cr|

exp (j[(s− r)αk + (k − s)αr + (r − k)αs])

for k = 1, N −1, 2, N −2, . . . The two normalisation co-
efficients cr and cs should be chosen as the coefficients
with the largest and second largest absolute value, re-
spectively1.

Granlund [11] proposed different descriptors as

dk :=
c1+kcN+1−k

c21
for k = 2, . . . , N − 2 (7)

These descriptors include the phase information, but
because of dk = dN−k, there is a considerable loss of
information compared to (6). Granlund also defineed
the (N − 1)(N − 2) (sic!) descriptors ci1+kc

k
N+1−i/c

i+k
1 ,

but these have a lot of redundancy and it is not clear
how to select a small subset therefrom.

2.2 Multidimensional contour representation

Instead of interpreting the contour coordinates as com-
plex numbers, the x and y coordinate can alternatively
be transformed separately:

c
(x)
k =

1
N

N−1∑
t=0

x(t) exp(−j2πkt/N) (8)

c
(y)
k =

1
N

N−1∑
t=0

y(t) exp(−j2πkt/N),

or, split into into real and imaginary part:

a
(x)
k =

1
N

N−1∑
t=0

x(t) cos(2πkt/N) (9)

b
(x)
k =

1
N

N−1∑
t=0

x(t) sin(2πkt/N)

a
(y)
k =

1
N

N−1∑
t=0

y(t) cos(2πkt/N)

b
(y)
k =

1
N

N−1∑
t=0

y(t) sin(2πkt/N).

Half of these components are redundant because b(x)0 =
b
(y)
0 = 0 and, for 0 < k ≤ N/2, it is

a
(x)
k = a

(x)
N−k b

(x)
k =−b(x)N−k (10)

a
(y)
k = a

(y)
N−k b

(y)
k =−b(y)N−k

1 When only one coefficient is non zero, this can be chosen
as cr and no phase normalisation is necessary.
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The inverse formula then reads(
x(t)
y(t)

)
=

(
a
(x)
0

a
(y)
0

)
+

2
dN−1

2 e∑
k=1

(
a
(x)
k b

(x)
k

a
(y)
k b

(y)
k

)
·
(

cos 2πkt/N
sin 2πkt/N

)
(11)

where dN−1
2 e is the smallest integer i with i ≥ N−1

2 . For
the sake of simplicity let N be an odd number through-
out the rest of this section.

The real coefficients (9) of the multidimensional rep-
resentation are connected to the complex coefficients
(3) by

ck = c
(x)
k + jc

(y)
k = a

(x)
k + b

(y)
k + j[a(y)

k − b
(x)
k ]

In contrast to ck, higher frequencies directly correspond
to higher indices k of the real coefficients a(x/y)

k , b
(x/y)
k

because of the symmetry relations (10).
Kuhl & Giardina [12] interpreted each summand(

xk(t)
yk(t)

)
= 2

(
a
(x)
k b

(x)
k

a
(y)
k b

(y)
k

)
·
(

cos 2πkt/N
sin 2πkt/N

)
in (11) as a parameterisation with parameter t ∈ [0, 2π]
of an ellipse that visualises the k-th Fourier coefficients.
Therefore they called the resulting Fourier descriptors
elliptic features. Based upon this idea, Lin & Hwang [13]
proposed the following translation, rotation and shift
invariant (but not scale invariant) Fourier descriptors:

Ik :=
[
a
(x)
k

]2
+
[
b
(x)
k

]2
+
[
a
(y)
k

]2
+
[
b
(y)
k

]2
(12)

Jk := det

(
a
(x)
k b

(x)
k

a
(y)
k b

(y)
k

)
= a

(x)
k b

(y)
k − b

(x)
k a

(y)
k

Kk := sgn
((

a
(x)
k a

(y)
k + b

(x)
k b

(y)
k

)(∣∣∣c(y)i

∣∣∣2 − ∣∣∣c(x)i

∣∣∣2)
+
(
a
(x)
i a

(y)
i + b

(x)
i b

(y)
i

)(∣∣∣c(x)k

∣∣∣2 − ∣∣∣c(y)k

∣∣∣2))
×
[∣∣∣c(x)i

∣∣∣2 ∣∣∣c(x)k

∣∣∣2 +
∣∣∣c(y)i

∣∣∣2 ∣∣∣c(y)k

∣∣∣2
+2
(
a
(x)
i a

(y)
i + b

(x)
i b

(y)
i

)(
a
(x)
k a

(y)
k + b

(x)
k b

(y)
k

)]
where i ∈ 1, . . . , (N − 1)/2 is a fixed index and sgn
denotes the signum function. The properties of the real
Fourier coefficients imply

IN−k = Ik, JN−k = Jk, KN−k = Kk

To make these features also scale invariant, they addi-
tionally need to be divided by a normalisation factor,
e.g. I1, which leads to the invariant descriptors Ik/I1,
Jk/I1, and Kk/I

2
1 .

A nice point about the features (12) is that they
have a geometric interpretation: Ik is the sum of two
semi-axis lengths of the k-th ellipse, |Jk| is proportional
to the area of the k-th ellipse, and Kk contains the
phase difference between ellipses i and k for the fixed
i. Compared to the N − 2 complex features (6), the
3
2 (N − 1) real elliptic Fourier features contain however
considerably less information about the shape. Lin &
Hwang tried to compensate this with additional fea-
tures, which were not rotation invariant, however.

An interesting generalisation of Fourier descriptors
from two-dimensional curves to n-dimensional closed
curves was made by Badreldin et al. [14]. They trans-
formed each component separately and then built a
vector containing l2-norms of all Fourier coefficients
of a given index. In two dimensions this is equiva-
lent to the descriptors by Shridhar & Badreldin [15]
(k = 0, . . . , (N − 1)/2):√∣∣∣c(x)k

∣∣∣2+ ∣∣∣c(y)k

∣∣∣2 =

√[
a
(x)
k

]2
+
[
b
(x)
k

]2
+
[
a
(y)
k

]2
+
[
b
(y)
k

]2
(13)

Rotation and startpoint shift invariance is obtained be-
cause absolute values are used, and translation invari-
ance results from discarding k = 0. For scale invariance,
they additionally need to be divided by a normalisa-

tion factor, e.g.
√
|c(x)1 |2 + |c(y)1 |2. The Fourier descrip-

tors (13) discard however a considerable portion of the
shape information: not only phase information is lost
but also x- and y-components are not coupled. There-
fore, for example, a shift of x-coordinates without a
change to y-coordinates cannot be detected.

2.3 Scalar contour representation

A two-dimensional contour can also be represented in
one dimension by mapping it to a one-dimensional sig-
nature function: (x(t), y(t)) 7→ f(t). The signature func-
tion f can already be invariant under translation, scal-
ing and rotation, like Zahn & Roskies’ cumulative an-
gular function [16], or the invariance normalisation can
be applied after the Fourier transform. Mapping two di-
mensions onto one generally leads to some loss of shape
information (see Fig. 2), but the hope is that the essen-
tial features are still captured for most shapes. For an
overview of possible signature functions, see [6].

In the comparative study [6], the centroid distance
performed best. Let (x0, y0) := 1

N

∑N−1
k=0 (xk, yk) be the

centre of gravity of the contour. Then the centroid dis-
tance is defined as
r(t) := |(x(t), y(t))− (x0, y0)| (14)

=
√

(x(t)− x0)2 + (y(t)− y0)2
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t

r(t)

Fig. 2 Two different shapes (grey) with the same signature
function “centroid distance” r(t) defined in Eq. (14).

These values are already rotation and translation in-
variant. Let (ck)N−1

k=0 be the (complex) Fourier trans-
form of (r(t))N−1

t=0 , i. e.

ck=
1
N

N−1∑
t=0

r(t) exp
(
−j 2πkt

N

)
(15)

Descriptors Rk that are also scale and start point shift
invariant can be obtained with the phase normalisation

Rk = exp(jsαk − jkαs) ·
|ck|
|c0|

(16)

where αk = arg(ck) denotes the polar angle of coeffi-
cient ck, and αs is the polar angle of the coefficient cs,
s ≥ 1 with the second largest absolute value. Note that
|c0| = c0 is always the largest absolute value because

c0 =
1
N

∑
t

r(t) =
1
N

∑
t

∣∣∣∣r(t) exp
(
−j 2πkt

N

)∣∣∣∣
≥

∣∣∣∣∣ 1
N

∑
t

r(t) exp
(
−j 2πkt

N

)∣∣∣∣∣ = |ck| for all k

An alternative, simpler normalisation is to discard the
phase information and use the absolute value |Rk|. This
normalisation was used by Zhang & Lu.

3 Application to broken shapes

All Fourier descriptors described in Sec. 2 start from a
closed contour description of the shape and are there-
fore not applicable when the shape is broken, i.e. con-
sists of more than one connected component. In this
section we first present a method to describe the con-
tour of an arbitrary (broken or unbroken) shape by a
periodic three-dimensional curve and then derive differ-
ent Fourier descriptors for this curve which are invariant
under translation, scale, rotation, and start point shift.

Fig. 3 Two different shapes (grey) with the same convex hull
(solid black).

3.1 Contour representation of broken shapes

A simple solution to circumvent the problem of broken
shapes would be to replace the shape parts with a single
closed curve that contains all parts, and to compute the
Fourier descriptors from this curve instead. An obvious
candidate for such a curve is the convex hull, i.e. the
smallest convex polygon that contains all points of the
shape. There are efficient algorithms for computing the
convex hull from a set of points [17]. As can be seen in
Fig. 3, replacing a contour with its convex hull looses
a considerable amount of information because very dif-
ferent shapes can have the same convex hull. To encode
more shape information, we therefore compute for each
point (x, y) on the convex hull its closest Euclidean dis-
tance d to the shape S:

d = min{|(x, y)− (u, v)| with (u, v) ∈ S} (17)

Instead of a two-dimensional contour (x(t), y(t)), we
then obtain a three-dimensional parametric curve
(x(t), y(t), d(t)) representing the shape, as shown in
Fig. 4.

When implementing an algorithm for computing the
contour representation (x(t), y(t), d(t)), two questions
occur: how the convex hull should be sampled and how
the distances d(t) can be efficiently computed. The ver-
tices of the convex hull polygon can be obtained, e.g.,
with Graham’s scan algorithm [17]. These vertices are
obvious sampling points, but their distance can be ar-
bitrary, so that the edges need to be sampled. As the
image sampling distance is one pixel, it is natural to
compute the edge length l and to add bl − 1c equidis-
tant sampling points on each edge.

To compute the distance d(t) for each sampling
point x(t), y(t), two efficient approaches are possible:

– Compute the distance transform image [18] of the
original shape and approximate d(t) by linear in-
terpolation of the distance image at the real point
x(t), y(t).

– Store all shape contour points in a kd-tree [19] and
compute (17) for each sampling point x(t), y(t) with
a nearest neighbour search in the kd-tree.
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d

y x

Fig. 4 Representation of a broken shape (grey) by a three-
dimensional curve (x(t), y(t), d(t)). (x, y) are the coordinates
of the convex hull and d is the distance between convex hull
and shape.

To estimate the runtime complexity of both algorithms,
let us first observe that a shape with an n × n bound-
ing box has O(n2) volume pixels, but only O(n) con-
tour points. As the fastest algorithms for computing
the distance transform require two runs over all im-
age pixels [18], the first algorithm requires O(n2) op-
erations to compute all contour distances. The sec-
ond algorithm requires O(n log n) operations for build-
ing the kd-tree and O(n log n) operations for querying
all nearest neighbours, resulting in a total runtime of
O(n log n). The second approach is thus faster, and we
have implemented it with the kd-tree library shipped
with the Gamera framework [19].

3.2 Broken shape Fourier descriptors

For the derivation of invariant Fourier descrip-
tors for the three dimensional point sequence
(x(t), y(t), d(t))N−1

t=0 , we propose three different ap-
proaches. Our first Fourier descriptor is built upon the
techniques of Sec. 2.1. It builds a complex number
by taking the centroid distance r(t) := |(x(t), y(t)) −
(x0, y0)|, see Eq. (14), as real part and the distance d(t)
as imaginary part. The sequence (r(t) + jd(t))N−1

t=0 is
already invariant under translation and rotation. Scale
and start point shift invariance of the Fourier coeffi-
cients

ck :=
1
N

N−1∑
t=0

[r(t) + jd(t)] exp(−j2πkt/N) (18)

is either achieved with the phase normalisation (com-
pare Eq. (16))

Ak := exp (jsαk − jkαs)
|ck|
|cr|

. (19)

or, simply, by using the absolute values |Ak|, where
αk = arg(ck) denotes the polar angle of coefficient ck,
and cr and cs are the two coefficients with the largest
and second largest absolute value (r ≥ 0, 0 < s < N/2),
and αs = arg(cs) is the polar angle of cs. For a fixed
number of n descriptors, the first n values in the se-
quence A0, AN−1, A1, AN−2, . . . should be selected.

The second Fourier descriptor under investigation
follows the multidimensional approach by Badreldin et
al. as described in Sec. 2.2. Let c(x)k , c(y)k , and c

(d)
k be

the complex Fourier coefficients of the three dimensions
x(t), y(t), and d(t) according to (8). Invariant Fourier
descriptors are then obtained as (k = 1, 2, . . . , dN−1

2 e)

Bk :=

√∣∣∣c(x)k

∣∣∣2 +
∣∣∣c(y)k

∣∣∣2 +
∣∣∣c(d)k

∣∣∣2√∣∣∣c(x)1

∣∣∣2 +
∣∣∣c(y)1

∣∣∣2 (20)

For a fixed number of n descriptors, the first n values
B1, B2, . . . , Bn should be selected.

The third descriptor uses the scalar representation
r(t) − d(t) that already is invariant under translation
and rotation. It is an approximation to the local radius
of the shape and leads to the Fourier coefficients

ck =
1
N

N−1∑
t=0

[r(t)− d(t)] exp(−j2πkt/N) (21)

As r(t) − d(t) are real values, the Fourier coefficients
at k and n − k are complex conjugates: ck = c∗N−k,
1 ≤ k < N . Therefore, only values for 0 ≤ k ≤ dN−1

2 e
are relevant. Again, the coefficients (21) can be made
scale and startpoint shift invariant either with the phase
normalisation

Ck := exp (jsαk − jkαs)
|ck|
|cr|

(22)

name symbol definition
complex position lk Eq. (6)
Granlund dk Eq. (7)
Elliptic Ik, Jk,Kk Eq. (12)
real position – Eq. (13)
centroid distance Rk Eq. (16)
broken A Ak Eq. (19)
broken B Bk Eq. (20)
broken C Ck Eq. (22)

Table 1 Names and symbols used for the Fourier descriptors
in the present study.
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Fig. 5 Example shapes from the MPEG-7 CE-1 part B data
set. Samples in each row belong to the same class.

or, simply, by using the the absolute values |Ck|, where
αk = arg(ck) denotes the polar angle of coefficient ck,
and cr and cs are the two coefficients with the largest
and second largest absolute value (r ≥ 0, 0 < s < N/2).
For a fixed number of n descriptors, the first n values
C0, C1, C2, . . . should be selected.

4 Evaluation

We have evaluated our new Fourier descriptors on two
different data sets, the MPEG-7 database of unbro-
ken shapes and a new real world data set with broken
shapes from scans of 19th century chant books in the
Eastern neumatic notation [20]. Both data sets are de-
scribed in detail in Sec. 4.2. Apart from a performance
comparison of the broken shape descriptors (Sec. 4.5),
we have also investigated the effect of different normali-
sation schemes (Sec. 4.3) and the number of descriptors
needed for similarity based retrieval (Sec. 4.4).

We have implemented all Fourier descriptors as a
toolkit for the Gamera framework for document analy-
sis and recognition2 [21]. The toolkit is published under
a free license together with the new data set of broken
neumes in the “Addons” section of the Gamera web-
site3. For convenience, a brief summary of all Fourier
descriptors under investigation is given in Table 1.

4.1 Performance measures

As evaluation criteria for shape based image retrieval,
we have used two different performance measures, the
precision/recall curve and the leave-one-out error rate
of a k-nearest neighbour (k-NN) classification. For a
single query image belonging to class ω, precision and

2 http://gamera.sf.net/
3 http://gamera.informatik.hsnr.de/addons/fd/
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gorgon
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diarkes
diesis-cross-
stroke

diatonic-ni-
ano
diatonic-ni-
kato

Fig. 6 Unrotated example shapes from our newly created
NEUMES data set. Samples in each row belong to the same
class.

recall are defined as follows: let nω be the number of
all images of class ω, and let kω be the number of im-
ages of class ω among the k nearest neighbours of the
query image; then kω/k is the precision and kω/nω is
the recall for this query. The precision of all test images
is averaged to yield a single precision value. Typically
k is not fixed, but the precision is measured for a given
recall rate. When the recall is increased, the precision
will generally decrease, but less so for better similar-
ity measures. The decrease of the precision/recall curve
can thus serve as a performance measure for similarity
based retrieval.

To evaluate the classification performance of the
different Fourier descriptors, a natural criterion is the
cross-validation or leave-one-out error rate of a kNN
classifier because it is an unbiased estimator of the ex-
pected error rate [22]. A kNN classifier assigns a test
sample to the majority class among its k nearest train-
ing samples. The leave-one-out error rate is the average
error rate when each sample is classified with a kNN
classifier that has been trained with the remaining n−1
samples, thereby yielding a single performance measure.

4.2 Data sets

A data set that has already been used for the evalua-
tion of different Fourier descriptors in the study [6] is
part B of the MPEG-7 CE-Shape-1 database4 [23]. It
consists of 1400 shapes that have been classified into 70
classes with 20 similar items in each class. Fig. 5 shows
sample shapes from this data set. As pointed out by the
authors of the data set, a 100% retrieval rate is impossi-
ble because some shapes are more similar to the shapes

4 http://www.dabi.temple.edu/~shape/MPEG7/
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Fig. 7 Impact of different normalisations on the complex po-
sition Fourier descriptor from Eq. (6). Recognition rates have
been measured by leave-one-out with a kNN classifier (k = 1)
on the MPEG-7 data set.

from different classes than to their own class, so that
“it is not possible to group them into the same class us-
ing only shape knowledge” [23]. In some images, there
are noise pixels which form additional small random
shapes. In order to ignore this noise, we have computed
the contour of the largest connected component for each
image only.

The MPEG-7 data set does not contain any broken
shapes, and thus allowed for a performance compari-
son of the new descriptors with the ordinary Fourier
descriptors described in Sec. 2. To also test the new de-
scriptors from Sec. 3.2 on actual broken shapes, we have
created a data set of broken glyphs from the four 19th
century music prints in Byzantine neume notation that
have also been used in [20] (sources HA-1825, HS-1825,
AM-1847, and MP1-1850). This “NEUMES” data set
consists of 640 images out of 40 different classes with
16 items in each class. Due to varying print quality,
some glyphs are connected while others are randomly
broken into up to eight fragments. As can be seen in
Fig. 6, some neumes are mirrored or elongated versions
of different neumes. It is thus important that the shape
descriptors used for discrimination are not invariant to
axial mirroring or arbitrary affine transformations. The
sample images in Fig. 6 are not rotated; to make ro-
tational invariance of the shape descriptors mandatory,
we have rotated the 16 items in each class in steps of
22.5◦.

4.3 Normalisation schemes

The Fourier descriptors from Sec. 2 can be normalised
(i.e., made invariant) in different ways. There are gen-
erally two degrees of freedom:
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Fig. 8 Impact of random disturbances on the complex posi-
tion Fourier descriptors lk. Disturbances have been simulated
as Gaussian random noise with variance σ2.

– Phase normalisation versus absolute values
– The index choices s and r for the normalisation co-

efficients cr and cs

Fig. 7 shows the effect of the different normalisation
schemes on the leave-one-out recogniton rate on the
MPEG-7 data set for the complex position Fourier de-
scriptor. Both for the absolute values and the phase
normalised descriptors, it is better to normalise not
with a fixed coefficient, but with the coefficient with
the largest absolute value (which may vary from shape
to shape). This normalisation limits the numeric range
of the descriptors to a fixed interval, a feature normali-
sation scheme that is known to improve the recognition
rate in many cases [24].

The observation that the phase normalisation per-
forms poorer than the absolute values is surprising,
however, because the phase normalised descriptors
carry information that is lost in the absolute values.
It turned out, however, that the phase angles of the
descriptors are much less robust with respect to small
changes in the contour coordinates. To demonstrate this
phenomenon, we did a small Monte Carlo experiment.
We added normally distributed random noise indepen-
dently to the x and y coordinates of a sample contour
and measured the deviation ∆ of the resulting descrip-
tors l̃k and |l̃k| as

∆l :=
1
L

m∑
k=1

|lk − l̃k|+ |lN−k − l̃N−k|

∆|l| := 1
L

m∑
k=1

| |lk| − |l̃k| |+ | |lN−k| − |l̃N−k| |

where lk are the undisturbed descriptors and L :=∑m
k=1 |lk| + |lN−k|. Fig. 8 shows these deviations, av-

eraged over 10 000 random experiments, as a function
of the variance σ2 of the random noise. The phase nor-
malisation obviously is much less robust. The same phe-
nomenon already occurs for the Fourier coefficients ck
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due to | |ck| − |c̃k| | ≤ |ck − c̃k|, and this is amplified by
the phase normalisation (6) because the phase angles
are multiplied with large integer values (s − r, k − s,
and r − k).

Further evidence for the instability of the phase an-
gles can be derived from Fig. 9, which shows the recog-
nition rates for different normalisations of the Fourier
descriptor broken A on the NEUMES data set. When
the phase normalisation coefficient cs is chosen as the
largest coefficient for 0 < s < N , this often results in
a high value s ≈ N − 1. This amplifies the phase angle
error of αk = arg ck because αk is multiplied with s in
the phase normalisation (19), thereby even resulting in
a negative effect on the recognition rate compared to
a fixed normalisation with s = 1. When the maximum
coefficient cs is only searched for small s (in most cases
this led to s = 2), the recognition rate is considerably
better. Nevertheless, in any case, the absolute values
performed yet better.

We therefore conclude that it is generally better to
use the absolute values instead of the phase normalised
coefficients, and that the scale invariance normalisation
should be done with the coefficient cr with the largest
absolute value rather than with fixed r.

4.4 Number of descriptors

Figs. 7 & 9 show that a small number of Fourier de-
scriptors is sufficient for shape retrieval. In our experi-
ments, this behaviour was universal, as can be seen in
Fig. 10: using more than 20 descriptors generally does
not increase the recognition rate any further. In our
experiments in the following subsection, we have there-
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Fig. 10 Leave-one-out recognition rates of a kNN classifier
(k = 1) on the MPEG-7 data set. All descriptors have been
normalised with the largest coefficient cr and the absolute
values have been taken.

fore limited the number of descriptors to 60, to be on
the safe side. It is interesting to note that these num-
bers, which are derived from the leave-one-out recog-
nition rates, are much lower than the numbers derived
by Zhang & Lu from the absolute magnitude of the
descriptors [6]. The reason for this difference is that
a criterion based on the magnitude does not take the
discriminative power of the coefficients into account.

4.5 Descriptor comparison

Fig. 11 shows the precision/recall curves for all investi-
gated Fourier descriptors on the MPEG-7 data set. To
all descriptors, the recommendations from the proceed-
ing subsections have been applied, i.e. they have been
normalised with the largest coefficient and by taking
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Fig. 11 Precision/recall curves for all Fourier descriptors on
the MPEG-7 data set. In all cases, 60 descriptors have been
used.
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Fig. 13 Precision/recall curves for the broken shape Fourier
descriptors on the NEUMES data set. In all cases, 60 descrip-
tors have been used.

the absolute value, and the first 60 descriptors have
been used.

The best performing Fourier descriptor was the
complex position, which seems to be a contradiction to
the experiments by Zhang & Lu [6], who found the cen-
troid distance to be best performing. This discrepancy
can however be explained with the different choice of
the normalisation coefficient cr, as shown in Fig. 12:
when the complex position Fourier descriptor is nor-
malised with a fixed coefficient, e.g. r = 1, it performs
poorer than the centroid distance, as was the case in
the study by Zhang & Lu.

On the MPEG-7 data set, the broken shape Fourier
descriptors did not perform as well as the best sin-
gle shape Fourier descriptor (complex position), but
the precision/recall curve of our broken C descriptor
is almost identical to the centroid distance Fourier de-

scriptor, with broken A and broken B performing only
slightly poorer. That the broken C and centroid distance
descriptors behave very similar is hardly surprising, be-
cause for single closed shapes the signature r(t) − d(t)
is simply an approximation of the signature (14).

On the NEUMES data set, only our new Fourier
descriptors are applicable, and the resulting preci-
sion/recall curves are shown in Fig. 13. On this data
set, there is a more distinct difference between the three
broken Fourier descriptors. Actually, the ranking is in
ascending order of the information loss of the descrip-
tor: mapping the complex number r + jd (broken A)
onto the real number r − d (broken C) looses some
information, and the broken B descriptor looses even
more shape information because it decouples the x, y,
and d coordinates. On the MPEG-7 data set, this has a
smaller impact on the recognition performance because
the shapes within a single class vary considerably. On
the NEUMES data set, in contrast, this is of importance
because detailed shape information is required for class
discrimination; see e.g. the two bottom rows in Fig. 6.

5 Conclusions

The new Fourier descriptors for broken shapes have
shown retrieval performances that were comparable to
common closed contour shape descriptors like the “cen-
troid distance” Fourier descriptor. As the new descrip-
tors have the benefit of being applicable to arbitrary
shapes (connected or broken), they can serve as a gen-
eral replacement for other Fourier descriptors lacking
this flexibility.

Our experiments have shown that it is generally bet-
ter to use the absolute values rather than the phase
normalised descriptors and that scale invariance nor-
malisation should be done with the largest coefficient,
rather than with a fixed coefficient. For practical appli-
cations on real world data, we would recommend to use
the “broken A” Fourier descriptor.
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