
Optimal Student Sectioning at Niederrhein University of Applied

Sciences

Steffen Goebbels, Timo Pfeiffer

Faculty of Electrical Engineering and Computer Science,

Niederrhein University of Applied Sciences,

Reinarzstr. 49, 47805 Krefeld, Germany, +49-2151-822-4633

Steffen.Goebbels@hsnr.de, Timo.Pfeiffer@stud.hn.de

This is a self-archived pre-print version of a conference paper

that will appear in the proceedings of Operations Research 2019

conference (OR 2019 Dresden), Springer, Berlin

Abstract

Degree programs with a largely fixed timetable require centralized planning of student groups (sections).

Typically, group sizes for exercises and practicals are small, and different groups are taught at the same time.

To avoid late or weekend sessions, exercises and practicals of the same or of different subjects can be scheduled

concurrently, and the duration of lessons can vary. By means of an integer linear program, an optimal group

division is carried out. To this end, groups have to be assigned to time slots and students have to be divided into

groups such that they do not have conflicting appointments. The optimization goal is to create homogeneous

group sizes.

1 Introduction

A large number of articles deals with the “Univer-

sity Course Timetable Problem”, see [1, 5] and the

literature cited there. Here we are concerned with the

subproblem “student sectioning”, more precisely with

“batch sectioning after a complete timetable is devel-

oped”, see [3, 4, 6] for a theoretical discussion and

overview. At our faculty for electrical engineering and

computer science, we perform student sectioning on

a fixed time table that already provides general time

slots for groups, see Figure 1. Based on enrollment

data, also the number of groups per lecture, exer-

cise and practical is known. The setting is typical for

technical courses at universities of applied sciences.

Groups for a given subject might be taught weekly

or only in every second or every fourth week. This

gives freedom to choose the starting week for such

groups and to place up to four groups in the same

time slot. These groups can be taught in alternating

weeks. Based on the time table’s general time slots,

our student sectioning problem has to select suitable

slots and suitable starting weeks for groups. It also has

to assign students to groups such that groups become

nearly equal in size for each subject. A somewhat sim-

ilar model with a different optimization goal is pre-

sented in [7]. For example, the often cited technique

presented in [2] does not provide automated assign-

ment of groups to time table slots. In the next section,

we describe our model. Using IBM’s solver ILOG

CPLEX 12.8.01, we applied the model with real en-

rollment data to our time table. Section 3 summarizes

results.

2 Model

For simple terminology, lectures, exercises and prac-

ticals that require group division are considered to be

separate modules which are numbered by 1, . . . ,N.

Every module k ∈ [N] := {1, . . . ,n} is taught for nk

groups Gk, j, j ∈ [nk]. The number of groups is deter-

mined in advance, based on current enrollment figures

and teaching capacities. Each module k can be offered

1see https://www.ibm.com/customer-engagement/commerce

pre-print OR 2019

Goebbels, Pfeiffer: Optimal Student Sectioning OR 2019

!"##

$"##

$"##

%#"##

%#"##

%%"##

%%"##

%&"##

%&"##

%'"##

%'"##

%("##

%("##

%)"##

%)"##

%*"##

%*"##

%+"##

%+"##

%!"##

%!"##

%$"##

%$"##

&#"##

&#"##

&%"##

!"#$%&

!"#$% ,-

&'($) ./ *+,$) 01

*+,$- 01

..+$/ 23

..+$0 245..+$/ ,6

&'($/ 78

'()*$%&

..+$/ 09

+12$) :;

+12$- :; *+,$- 01

&'($/ 7;

0!34$- 7< &'($- ./

&'($/ ./

0!34$/ 7<
&'($- ./ *3"0$0 24=

..+$/ >8

+)$#)*$%&

..+$- 23

*+4$) ?1

..+$) 23 ..+$- 23 +12$- :;

*+4$- ?1

..+$) ,6 +12$- :; ..+$- ,6

!"#$% 7@

',(-*$%& 0!34$) A<

..+$) 23

*+4$0 245&

!"#$% 0; ..+$- ,6

*3"0$0 245
*+4$- 2B

..+$) ,6 *+4$- 2B+12$- :;

!"#$% ,9

.-/$%& *+4$) ?1
*+4$- ?1

0!34$) A<

0!34$/ A<

0!34$- A< ..+$/ C;

Figure 1: Schedule of the bachelor course in computer science, second semester: the first acronym refers to the subject,

then P denotes practical, U stands for exercise, V for lecture, T for tutorial and F for language course. Practicals,

exercises (including language courses) and parallel lectures are subject to group planning. The last acronym denotes

the lecturer. In this plan, all practicals but “OOA P” have a four-week frequency. Groups for “OOA P” are taught every

second week. Exercises “MA2 U”, “ALD U”, and “OOA U” have a weekly frequency, the other exercises are taught

every second week. Lecture “OOA V” is split into two groups.

on at most mk time slots Tk,1, . . . ,Tk,mk
per week, cf.

Figure 2. Not all time slots might be needed, for ex-

ample if nk < mk. For the participants of each group, a

module takes place either weekly (pk := 1), every sec-

ond week (pk := 2) or every fourth week (pk := 4), see

Table 1. If a module k is given in every second week,

then at Tk,i two groups can be planned in alternating

weeks. This allows us to split Tk,i into two simultane-

ous sub-slots Tk,i,1 and Tk,i,2. At most one group can

be assigned to each of these sub-slots. The third index

indicates whether the module is given for the assigned

group in odd or even weeks. In the other week, par-

ticipating students can take part in another bi-weekly

module. If a module is given weekly, we only use a

sub-slot Tk,i,1, for modules given every fourth week,

time sub-slots Tk,i,l , l ∈ [4], are considered. However,

due to the workload of the instructors, there may be

restrictions for assigning groups to time slots. The

variables 1 ≤ qk,i ≤ pk,
∑mk

i=1 qk,i ≥ nk, indicate the

maximum number of groups that can be assigned

to slots Tk,i, i.e., the maximum number of sub-slots

with group assignment. For each group Gk, j we de-

Table 1: Left: a group assigned to a sub time-slot Tk,i,l is

taught depending on frequency pk in alternating weeks.

Right: A student can be member of groups of different

modules that are taught in overlapping time slots but in

different weeks (pk1
:= 2, pk2

=: 4, and pk4
=: 4)

frequency week week week week

pk 1 2 3 4

1 Tk,i,1 Tk,i,1 Tk,i,1 Tk,i,1

2 Tk,i,1 Tk,i,2 Tk,i,1 Tk,i,2

4 Tk,i,1 Tk,i,2 Tk,i,3 Tk,i,4

week 1 week 2 week 3 week 4

Tk1,i1,1 Tk1,i1,1

Tk2,i2,2

Tk3,i3,4

2

Goebbels, Pfeiffer: Optimal Student Sectioning OR 2019

student s ∈ [S] := {1, 2, . . . , S} is enrolled for a module k ∈ [N],
i.e. cs,k = 1

bk,j ,s = 1

group Gk,1 Gk,2 Gk,3 . . . Gk,j . . . Gk,nk

ak,j ,i ,l = 1

time slot Tk,1 Tk,2 . . . Tk,i . . . Tk,mk

time sub-slot Tk,1,1 Tk,2,1 . . . Tk,i ,1 . . . Tk,mk ,1

...
...

...
...

...
...

Tk,1,l Tk,2,l . . . Tk,i ,l . . . Tk,mk ,l

...
...

...
...

...
...

Tk,1,pk Tk,2,pk . . . Tk,i ,pk . . . Tk,mk ,pk

Figure 2: Model and notation

fine binary variables that assign a time sub-slot to the

group. Let ak, j,1,1, . . . ,ak, j,1,pk
, ak, j,2,1, . . . ,ak, j,2,pk

,. . . ,

ak, j,mk,1, . . . ,ak, j,mk,pk
∈ {0,1} with

mk
∑

i=1

pk
∑

l=1

ak, j,i,l = 1. (1)

If ak, j,i,l = 1, the lesson for group Gk, j takes place on

time sub-slot Tk,i,l . Every sub-slot Tk,i,l has to be as-

signed at most once (k ∈ [N], i ∈ [mk], l ∈ [pk]):

nk
∑

j=1

ak, j,i,l ≤ 1. (2)

Only qk,i groups may be scheduled for a time slot Tk,i,

i.e., for all k ∈ [N], i ∈ [mk]:

nk
∑

j=1

pk
∑

l=1

ak, j,i,l ≤ qk,i. (3)

Let S ∈ N be the number of all students. Each stu-

dent can register for the modules individually or, as in

the case of English courses, is automatically assigned

based on her or his level. Students can select modules

that belong to different semesters, as modules may

have to be repeated. We use a matrix C ∈ {0,1}S×N

to describe whether a student has enrolled for a mod-

ule. Thereby, cs,k = 1 indicates that student s has cho-

sen module k. We have to assign exactly one group to

each student s ∈ [S] for each chosen module. To this

end, we use binary variables bk, j,s ∈ {0,1}. Student s

is in group j of module k iff bk, j,s = 1. For k ∈ [N] and

s ∈ [S], we get condition

nk
∑

j=1

bk, j,s = cs,k. (4)

An external group assignment takes place for some

modules (language courses). In this case, variables

bk, j,s have to be set accordingly.

However, there must be no collision with simultaneous

group assignments, cf. Table 1. Each time slot con-

sists of one to four hours in a fixed time grid covering

one week. Per module, the duration of time slots is

(approximately) the same. Each week can be modeled

with the set [50] representing hours, i.e., Tk,i, Tk,i,l ⊂
[50]. It is allowed that the hours of time slots Tk,i1 and

Tk,i2 (of the same module k) overlap, i.e. Tk,i1 ∩Tk,i2 6= /0

for i1 6= i2, only if the module is given simultaneously

by several instructors in different rooms.

• If a student is in a weekly group of one module,

he may not be in a time-overlapping group of an-

other module.

• If a student is in a bi-weekly group on a time sub-

slot with a third index l, he may not be in another

bi-weekly group on a time-overlapping sub-slot

with the same third index l. He also must not be

assigned to a group that belongs to an overlapping

four-weekly time sub-slot with a third index l or

l +2.

3

Goebbels, Pfeiffer: Optimal Student Sectioning OR 2019

• If a student belongs to a group that is placed on

a four-weekly time sub-slot with a third index l,

he must not be in another group belonging to an

overlapping four-weekly time sub-slot with the

same third index l.

Conflicting time sub-slots are calculated in advance.

Let Tk1,i1,l1 and Tk2,i2,l2 , k1 6= k2, be two conflicting time

slots for which, according to previous rules, two non-

disjoint groups cannot be assigned. Group Gk1, j1 is as-

signed to time sub-slot Tk1,i1,l1 iff ak1, j1,i1,l1 = 1, and a

student s is assigned the group Gk1, j1 iff bk1, j1,s = 1. If

also group Gk2, j2 is assigned to time sub-slot Tk2,i2,l2 via

ak2, j2,i2,l2 = 1 and if student s is assigned to this group

via bk2, j2,s = 1, then there is a collision. Thus,

ak1, j1,i1,l1 +bk1, j1,s +ak2, j2,i2,l2 +bk2, j2,s ≤ 3 (5)

has to be fulfilled for all colliding pairs

(Tk1,i1,l1 ,Tk2,i2,l2) of time sub-slots, all groups j1 ∈ [nk1
],

j2 ∈ [nk2
] and all students s ∈ [S].

Collisions between group assignments are not defined

independently of students by rule (5). This leads to a

significant combinatorial complexity that has to be re-

duced. To speed-up the algorithm, certain groups can

be assigned to sub-slots in a fixed manner. This can

be done easily if, for a subject k, the number of sub-

slots mk · pk equals the number of groups nk. For such

modules k we can set

ak, j,i,l :=

{

1 : j = (i−1) · pk + l

0 : otherwise.
(6)

By assigning groups to sub-slots in a chronologically

sorted manner due to their group number, one can also

avoid many permutations. Sorting can be established

by following restrictions for all modules k ∈ [N], all

time slots i1 ∈ [mk] and all sub-slots Tk,i1,l1 , l1 ∈ [pk],
and all groups j1 ∈ [nk]:

max

mk
∑

i2=i1+1

j1−1
∑

j2=1

pk
∑

l2=1

ak, j2,i2,l2 ,

j1−1
∑

j2=1

pk
∑

l2=l1+1

ak, j2,i1,l2

≤ nk · (1−ak, j1,i1,l1). (7)

The inequality can be interpreted as follows. If group

j1 has been assigned to sub-slot Tk,i1,l1 then no group

with smaller index j2 < j1 must be assigned to a

“later” sub-slot Tk,i2,l2 in the sense that either i2 ≥ i1
or i2 = i1 and l2 > l1.

Dual education and part-time students s may only be

divided into those groups of their semester, that are as-

signed to time slots on certain days. This restriction

does not apply to modules that do not belong to the

students’ semester (repetition of courses). For all time

sub-slots Tk,i,l , at which s cannot participate, we re-

quire for j ∈ [nk]:

ak, j,i,l +bk, j,s ≤ 1. (8)

Two (but no more) students s1 and s2 can choose to

learn together. Then they have to be placed into the

same groups of the modules that they have both cho-

sen. This leads to constraints if cs1,k = cs2,k, k ∈ [N].
Then for all j ∈ [nk]

bk, j,s2
= bk, j,s1

. (9)

Students should be assigned to groups such that, for

each module, groups should be of (nearly) equal size

(cf. [2]). To implement this target, we represent the dif-

ference of sizes of groups j1 and j2 of module k with

the difference of two non-negative variables ∆
+
k, j1, j2

,

∆
−
k, j1, j2

≥ 0:

∆
+
k, j1, j2

−∆
−
k, j1, j2

=
S

∑

s=1

(bk, j1,s −bk, j2,s). (10)

Thus, under constraints (1)–(5) and (8)–(10) we have

to minimize following objective function:

N
∑

k=1

nk−1
∑

j1=1

nk
∑

j2= j1+1

(∆+
k, j1, j2

+∆
−
k, j1, j2

− εk, j1, j2). (11)

We observed long running times if an uneven number

of students have to be divided into an even number of

groups, and vice versa. To further simplify complex-

ity, we propose to subtract float or integer variables

0 ≤ εk, j1, j2 ≤ min{D,∆
+
k, j1, j2

+∆
−
k, j1, j2

} within the ob-

jective function (11). They serve as slack variables that

allow absolute group size differences to vary between

0 and D ∈ N0 = {0,1,2, . . .} without penalty. Signifi-

cant speedup already is obtained for D= 1, see Section

3. Thus, we consider a group sectioning as being op-

timal even if there exist slightly better solutions with

fewer differences.

In certain groups j, a contingent of r places can be

reserved (e.g., for participants of other faculties). This

is done by adding or subtracting the number r on the

right side of (10): If j = j1, then r has to be added, if

j = j2, then r is subtracted.

4

Goebbels, Pfeiffer: Optimal Student Sectioning OR 2019

Table 2: CPLEX 12.8.0 processor times measured in seconds on an Intel Core i5-6500 CPU, 3.20 GHz x4 with 16 GB

RAM

slack size sorting initialization running time running time

D (7) (6) computer science electrical engineering

2 - - 51.59 0.13

2 - X 3.35 0.1

2 X - 2.8 0.06

2 X X 1.57 0.05

1 - - 57.92 0.15

1 - X 6.32 0.08

1 X - 3.49 0.09

1 X X 3.33 0.07

0 - / X - / X memory overflow ≤ 2.65

3 Results

We merged planning and enrollment data from dif-

ferent sources to generate the input for the integer

linear program. It can be applied separately for each

field of study. Presented results belong to our bache-

lor programs in computer science (second and fourth

semester, 330 students including 59 dual education

and part-time students, 30 modules, up to 8 groups per

module) and electrical engineering (second, fourth,

and sixth semester, 168 students including 40 dual

education and part-time students, 27 modules, up to

4 groups per module). Table 2 summarizes running

times with respect to combinations of speed-up mea-

sures D ∈ {1,2}, sorting (7), and fixed assignment

of certain groups to time-slots (6). Choosing D = 0

leads to memory overflow after eight hours in case

of computer science (independent of speed-up mea-

sures), whereas group division for electrical engineer-

ing finishes in 2 65 seconds (without speed-up mea-

sures).

4 Enhancements

Some students miss the date for enrollment. To assign

them to groups, one can also use the integer linear pro-

gram as an online algorithm. Then one adds students

to an existing group sectioning by maintaining all pre-

viously done assignments.

If students choose modules from different semesters

then the existence of a feasible solution is not guaran-

teed. However, such situations could be identified prior

to group planning. Alternatively, one can deal with

such students by applying the online version of the al-

gorithm in order to individually identify conflicts.

As a secondary optimization goal, one could maximize

the number of students that get commonly assigned to

groups along all modules. Students who have to re-

peat modules could be distributed as evenly as possi-

ble among groups, since experience has shown that for

such students the risk of non-appearance is high.

References

[1] Bettinelli, A., Cacchiani, V., Roberti, R., Toth,

P.: An overview of curriculum-based course

timetabling. TOP 23(2), 313–349 (2015)

[2] Laporte, G., Desroches, S.: The problem of as-

signing students to course sections in a large en-

gineering school. Computers & Operations Re-

search 13(4), 387 – 394 (1986)

[3] Müller, T., Murray, K.: Comprehensive approach

to student sectioning. Annals of Operations Re-

search 181(1), 249–269 (2010)

[4] Schaerf, A.: A survey of automated timetabling.

Artificial Intelligence Review 13(2), 87–127

(1999)

[5] Schimmelpfeng, K., Helber, S.: Application of

a real-world university-course timetabling model

solved by integer programming. OR Spectrum

29(4), 783–803 (2007)

5

Goebbels, Pfeiffer: Optimal Student Sectioning OR 2019

[6] Schindl, D.: Student sectioning for minimizing

potential conflicts on multi-section courses. In:

Proceedings of the 11th International Confer-

ence of the Practice and Theory of Automated

Timetabling (PATAT 2016), pp. 327–337. Udine

(2016)

[7] Sherali, H.D., Driscoll, P.J.: Course scheduling

and timetabling at USMA. Military Operations

Research 4(2), pp. 25–43 (1999)

6

	Introduction
	Model
	Results
	Enhancements

